# ARIA (Allergic Rhinitis and its Impact on Asthma) 2008 Update

In collaboration with the World Health Some of the second seco Organization, GA<sup>2</sup>LEN and AllerGen

-1-

Jean Bousquet, Nikolai Khaltaev, Alvaro A Cruz, Judah Denburg, Wytske Fokkens, Alkis Togias, Torsten Zuberbier, Carlos Baena-Cagnani, G Walter Canonica, Chris van Weel, Ioana Agache, Nadia Aït-Khaled, Claus Bachert, Michael Blaiss, Sergio Bonini, Louis-Philippe Boulet, Philippe-J Bousquet, Paulo Camargos, Kai-Hakon Carlsen, Adnan Custovic, Yuzhi Chen, Ronald Dahl, Pascal Demoly, Habib Douagui, Stephen Durham, Roy Gerth van Wijk, Omer Kalayci, Michael Kaliner, You-Young Kim, Marek L Kowalski, Piotr Kuna, Catherine Lemiere, Le Thi Tuyet Lan, Jing Li, Richard Lockey, Sandra Mavale, Eli O Meltzer, Yousser Mohammad, Joaquim Mullol, Robert Naclerio, Robyn O'Hehir, Ken Ohta, Sandra Ouedraogo, Susanna Palkonen, Nikolaos Papadopoulos, Giovanni Passalacqua, Ruby Pawankar, Todor Popov, Klaus Rabe, José Rosado-Pinto, Glenis Scadding, F Estelle R Simons, Elina Toskala, Erkka Valovirta, Paul van Cauwenberge, De Yun Wang, Magnus Wickman, Barbara Yawn, Arzu Yorgancioglu, Osman Yusuf, Heather Zar

**Review Group:** Isabella Annesi-Maesano, Eric Bateman, Ali Ben Kheder, Christine Bond, Jacques Bouchard, Daniel Boyake, Peter Burney, William W Busse, Moira Chan-Yeung, Niels Chavannes, Alexander Chuchalin, William Dolen, Lawrence Grouse, Marc Humbert, Sebastian L Johnston, James Kemp, Paul P Kieth, Jean-Michel Klossek, Désirée Larenas, Brian Lipworth, Jean-Luc Malo, Gailen Marshall, Charles Naspitz, Markku Nieminen, Bodo Niggemann, Ewa Nizandowska, Yoshitaka Okamoto, Maria Pia Orru, Paul Potter, David Price, Stuart Stollof, Olivier Vandenplas, Giovanni Viegi, Dennis Williams GA<sup>2</sup>LEN (Global Allergy and Asthma European Network), supported by EU Framework programme for research, contract n° FOOD-CT-2004-506378

AllerGen NCE Inc, joint initiative of the Natural Science and Engineering Research Council, the Canadian Institutes of Health Research, the Social Sciences and Humanities Research Council and Industry Canada

mg Reserts

| Introduction                                                                  |                                         |  |
|-------------------------------------------------------------------------------|-----------------------------------------|--|
| 1.1. The ARIA workshop                                                        |                                         |  |
| 1.2. Need for an ARIA update                                                  |                                         |  |
| 1.3. Development of the ARIA update                                           |                                         |  |
| Definition and classification of rhinitis                                     |                                         |  |
| 2.1. Introduction                                                             |                                         |  |
| 2.2. Allergic rhinitis                                                        | ·····                                   |  |
| 2.2.1. Definition of allergic rhinitis                                        |                                         |  |
| 2.2.2. Intermittent (IAR) and persistent allergic rhinitis (PER)              | ()                                      |  |
| 2.2.3. Severity of allergic rhinitis                                          |                                         |  |
| 2.3. Other causes of rhinitis                                                 |                                         |  |
| 2.3.1. Infectious rhinitis                                                    |                                         |  |
| 2.3.2. Work-related rhinitis                                                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |  |
| 2.3.3. Drug-induced rhinitis                                                  | V                                       |  |
| 2.3.4. Hormonal rhinitis                                                      |                                         |  |
| 2.3.5. Nasal symptoms related to physical and chemical factors                |                                         |  |
| 2.3.6. Rhinitis in smokers                                                    | <u> </u>                                |  |
| 2.3.7. Food-induced rhinitis                                                  | <u> </u>                                |  |
| 2.3.8. NARES and eosinophilic rhinitis                                        |                                         |  |
| 2.3.9. Rhinitis of the elderly                                                |                                         |  |
| 2.3.10. Emotions                                                              | <u></u>                                 |  |
| 2.3.11. Atrophic rhinitis                                                     |                                         |  |
| 2.3.12. Unknown aetiology (idiopathic rhinitis)                               | ()                                      |  |
| 2.4. Rhinosinusitis                                                           |                                         |  |
| 2.4. 1. Clinical definition                                                   | Q-                                      |  |
| 2.4.2 Definition for enidemiologic studies                                    |                                         |  |
| 2.4.2. Definition for epidemiologic studies<br>2.4.3. Definition for research | N.                                      |  |
| 2.4.3. Definition for research                                                |                                         |  |
| isk factors                                                                   | ······                                  |  |
| ISA Idulors                                                                   |                                         |  |
| 3.1. Genetics and familial history                                            |                                         |  |
| 3.2. Early-life risk factors                                                  |                                         |  |
| 3.3. Ethnic groups                                                            |                                         |  |
| 3.4. Allergen exposure<br>3.4.1. Inhalant allergens                           | ······                                  |  |
| 3.4.1. Inhalant allergens                                                     | <u> </u>                                |  |
| 3.4.2. Food allergens                                                         |                                         |  |
| 3.4.3. Occupational agents                                                    |                                         |  |
| 3.5. Pollutants                                                               | J                                       |  |
| 3.5.1. Outdoor pollutants in allergic rhinitis                                | -                                       |  |
| 3.5.2. Indoor air pollution                                                   |                                         |  |
| 3.5.3. Tobacco smoke                                                          |                                         |  |
| 3.5.4. Climatic change impacts allergens                                      |                                         |  |
| 3.6. Social class                                                             |                                         |  |
| lechanisms                                                                    |                                         |  |
| 4.1. Allergic inflammation                                                    |                                         |  |
| 4 1 1 JoE-dependent mechanisms                                                |                                         |  |
| 4.1.2. Non-IgE-dependent mechanisms                                           |                                         |  |
| 4.1.3. Inflammation of the nasal mucosa in allergic rhinitis                  |                                         |  |
| 4.1.4. Inflammatory cells                                                     |                                         |  |
| 4.1.5. Mediators                                                              |                                         |  |
| 4.1.6. Neurogenic mediators                                                   |                                         |  |
| 4.1.7. Remodeling processes                                                   |                                         |  |
| 4.2. Nasal hyperreactivity and non-specific triggers                          |                                         |  |
| urden                                                                         |                                         |  |
| 5.1. Prevalence of allergic rhinitis                                          |                                         |  |
| 5.1.1. Prevalence of allergic minitis                                         |                                         |  |
| 5.1.1. WONDCENTIC Studies                                                     |                                         |  |
| 5.1.2. Studies using the ARIA definition                                      |                                         |  |
| 5.1.3. SAPALDIA                                                               |                                         |  |
| 5.1.4. SCARPOL                                                                |                                         |  |
| 5.1.5. ISAAC                                                                  |                                         |  |
| 5.1.6. ECRHS                                                                  |                                         |  |
| 5.2. Variations in allergy prevalence                                         |                                         |  |
| 5.2.1. Rural-urban differences and modification of life style                 |                                         |  |
| 5.2.2. Infections in the neonatal period and the hygiene hypothesis           |                                         |  |
| 5.2.3. Other factors                                                          |                                         |  |
| 5.2.4. Natural history                                                        |                                         |  |
| 5.2.5. Conclusion                                                             |                                         |  |
| 5.3. Social life                                                              |                                         |  |
| 5.3.1. Generic QOL questionnaires                                             |                                         |  |
| 5.3.2. Specific QOL questionnaires                                            |                                         |  |
| 5.3.3. Evolution of QOL during interventions                                  |                                         |  |
| 5.3.4. Quality-of-life instruments in the individual patients                 |                                         |  |
|                                                                               |                                         |  |
|                                                                               |                                         |  |

|                      | ן disability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5.6. Work im         | pairment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57 |
| 5.7. The soci        | al economic impact of asthma and rhinitis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                      | nderstanding the costs of illness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 5.7.1.01             | Idensianding the costs of inness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 5.7.2. IN            | ne costs of illness for rhinitis and its co-morbidities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 5.7.3. Be            | est economic strategies for the care of asthma and rhinitis: cost-effectiveness studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 5.7.4. Po            | plicy implications of the economic burden of asthma and rhinitis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 5.7.5. Co            | onclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                      | and general ENT examination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 6.2. Skin test       | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 6.2.1. Me            | ethods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64 |
| 6.2.2. Cri           | riteria of positivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65 |
| 623 Fa               | actors affecting skin testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65 |
| 624 Int              | terpretation of skin tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67 |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 0.3. 111 VILIO LE    | ests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 07 |
| 6.3.1. Se            | erum-total IgE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b/ |
| 6.3.2. Se            | erum-specific IgE using classical methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67 |
| 6.3.3. Sic           | gnificance of serum allergen-specific IgE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68 |
| 634 Se               | erum-specific laE using microarray technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68 |
| 635 50               | reaping tests using serum-specific InE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83 |
| 0.0.0. 00<br>6 0 0 D | erum-specific IgE using microarray technology<br>creening tests using serum-specific IgE<br>eripheral blood activation markers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 0.3.0. Pe            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 6.3.7. Na            | asal-specific IgE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69 |
| 6.4. Nasal ch        | nallenge tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69 |
| 6.4.1. Na            | asal challenge with allergen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70 |
| 642 Ch               | hallenge with occupational agents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 |
| 65 Environn          | mental exposure units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| o.o. Other tes       | sts<br>ediators released during allergic reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 6.6.1. Me            | ediators released during allergic reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 71 |
| 6.6.2. Cy            | ytology and histology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71 |
| 6.6.3. Me            | easurement of nitric oxide in exhaled air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71 |
| 6.7 Diagnosi         | easurement of nitric oxide in exhaled air<br>is of immediate-type allergy<br>symptomatic sensitized subjects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71 |
| 671 Ac               | no of infinite analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72 |
| 0.7.1.45             | symptomatic sensitized subjects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 6.7.2. MC            | ono and polysensitized subjects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 6.7.3 C              | Correlation between tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72 |
| 6.7.4 D              | Diagnosis of inhalant allergy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| This fiau            | re does not apply to pre-school children                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74 |
| Some na              | atients with allergic rhinitis may only have nasal obstruction as a cardinal symptom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74 |
| Somo pa              | atients with mild allergic rhinitis may have dissociated symptoms of rhinorrhea, sneezing and nasal obstruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7/ |
| Some pa              | alents with mild allergic minus may have dissociated symptoms of minormea, sneezing and hasal obstruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 6.7.5 L              | Diagnosis of food allergy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 6.7.6 D              | Diagnosis of food allergy<br>Diagnosis of occupational allergy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75 |
| 6.8. Other EN        | NT diagnosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75 |
| 6.8.1. Ba            | acteriology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 682 Na               | asal endoscony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75 |
| 6.8.3 lm             | Jacing Children State |    |
| 0.0.3. 111           | lagilig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 0.0.4. IVIL          | ucociliary function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 0.9. Assessif        | nent of the seventy and control of minitis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /3 |
| 6.9.1. Co            | ontrol questionnaires and visual analogue tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75 |
| 6.9.2. Ob            | bjective measures of severity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 7.1 Environn         | mental control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                      | evels of prevention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|                      | halant-allergen avoidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                      | ther measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| 7.2. Drug trea       | atment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81 |
| 7.2.1. Ro            | atment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                      | ral H1-antihistamines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                      | ppical H1-antihistamines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                      | tranasal glucocorticosteroids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                      | nti-leukotrienes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 7.2.6. Co            | ombination therapy with intranasal glucocorticosteroids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87 |
|                      | romones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|                      | econgestants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|                      | nti-cholinergic agents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                      | Systemic glucocorticosteroids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|                      | Other medications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                      | specific immunotherapy: Therapeutic vaccines for allergic diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                      | lergen standardization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|                      | Jbcutaneous immunotherapy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                      | Jblingual immunotherapy (SLIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|                      | Jbcutaneous immunotherapy combined with anti-IgE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 7.5. Complen         | mentary and alternative medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                      | eatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|                      | treatment of rhinitis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                      | I guidelines for the treatment of allergic rhinitis and co-morbidities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| I.O. FIRCUCA         | י שמיסטוריס זיסי עוב עבמערוביוג טו מוביצוב דווווועט מווע טריווטוטועועבט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |

| 7.0.4. Associate life, and affected to life, of the two strength                                                                                                                                                                     |                               | 07          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| 7.8.1. Availability and affordability of the treatment                                                                                                                                                                               |                               |             |
| 7.8.2. Recommendations for the management of allergic rhinitis                                                                                                                                                                       |                               |             |
| 7.8.4. Management of allergic rhinitis in the pharmacy                                                                                                                                                                               |                               |             |
| 7.8.5. Specific considerations                                                                                                                                                                                                       |                               | 104         |
| 7.9. Education                                                                                                                                                                                                                       |                               |             |
| 8. Health promotion and prevention                                                                                                                                                                                                   |                               |             |
| 8.1. Primary prevention of atopic diseases                                                                                                                                                                                           |                               |             |
| 8.1.1. Maternal and infant feeding                                                                                                                                                                                                   |                               |             |
| 8.1.2. House dust mites                                                                                                                                                                                                              | /. •                          |             |
| 8.1.3. Early exposure of pets                                                                                                                                                                                                        |                               |             |
| 8.1.4. Occupational agents                                                                                                                                                                                                           | (_)                           | 110         |
| 8.1.5. Environmental tobacco smoke                                                                                                                                                                                                   |                               | 110         |
| 8.1.6. Prevention of the development of asthma in rhinitis patients                                                                                                                                                                  | ~                             | 110         |
| 8.1.7. Secondary prevention of new sensitizations                                                                                                                                                                                    |                               | 111         |
| 9. Links between rhinitis and asthma                                                                                                                                                                                                 | $\square$                     | 112         |
| 9.1. Epidemiologic evidence                                                                                                                                                                                                          | $\sim$                        | 112         |
| 9.1.1. Prevalence of asthma in patients with rhinitis                                                                                                                                                                                |                               | 112         |
| 9.1.2. Prevalence of rhinitis in patients with asthma                                                                                                                                                                                |                               | 112         |
|                                                                                                                                                                                                                                      |                               |             |
| 9.1.4. Changes in the prevalence of asthma and rhinitis                                                                                                                                                                              | ~~~~                          |             |
| 9.1.3. Rhinitis as a risk factor for the control of astimita 9.1.4. Changes in the prevalence of asthma and rhinitis 9.1.5. Rhinitis and non-specific bronchial hyperreactivity 9.1.6. Allergin chinitic as a risk factor for asthma | <u> </u>                      |             |
| 9.1.6. Allergic rhinitis as a risk factor for asthma<br>9.2. Common risk factors                                                                                                                                                     | <u> </u>                      |             |
| 9.2. Common risk factors<br>9.2.1. Allergens                                                                                                                                                                                         | ×                             |             |
| 9.2.1. Allergens<br>9.2.2. Occupational agents                                                                                                                                                                                       |                               | 113<br>115  |
| 9.2.2. Occupational agents<br>9.3. Commonalities and differences in the mechanisms of asthma and rhinitis                                                                                                                            | <u> </u>                      | 115<br>116  |
| 9.3. Common pathways                                                                                                                                                                                                                 |                               | 116         |
| 9.3.1. Common pathways<br>9.3.2. Similarities and differences of nasal and bronchial inflammation in ast                                                                                                                             | thma and rhinitis             | 110<br>117  |
| 9.3.3. Bronchial inflammation in rhinitis                                                                                                                                                                                            |                               |             |
| 9.3.4 Nasal and bronchial remodeling                                                                                                                                                                                                 |                               | 110         |
| 9 3 5 Allergy as a local disease                                                                                                                                                                                                     | N                             | 118         |
| <ul> <li>9.3.4. Nasal and bronchial remodeling</li> <li>9.3.5. Allergy as a local disease</li> <li>9.3.6. Allergy as a systemic disease: Bidirectional relationship between nas</li> </ul>                                           | al and bronchial inflammation |             |
| 9.4. Impact of the nasal function and dysfunction on lower airways<br>9.5. Clinical consequences                                                                                                                                     | X                             |             |
| 9.5. Clinical consequences                                                                                                                                                                                                           |                               | 120         |
| 9.6. Therapeutic consequences                                                                                                                                                                                                        |                               | 121         |
| 9.6.1. Drugs administered topically                                                                                                                                                                                                  |                               |             |
| 9.6.2. Drugs administered orally                                                                                                                                                                                                     |                               | 121         |
| 9.6.3. Specific immunotherapy                                                                                                                                                                                                        |                               | 122         |
| 9.6.3. Specific immunotherapy<br>9.6.4. Anti-IgE monoclonal antibody                                                                                                                                                                 |                               | 123         |
| 9.6.5. The treatment of rhinitis reduces asthma severity                                                                                                                                                                             |                               | 123         |
| 9.7. Costs                                                                                                                                                                                                                           |                               |             |
| 9.8. Rhinitis and asthma: a continuum of disease?                                                                                                                                                                                    |                               |             |
| 9.9. Management of asthma and minitis in athletes                                                                                                                                                                                    |                               |             |
| 9.10. Diagnosis of astrima in minitis patients                                                                                                                                                                                       |                               | 124         |
| 9.8. Kninius and astrima: a continuum of disease?                                                                                                                                                                                    |                               | 106 ،       |
| 10.1 Conjunctivitis                                                                                                                                                                                                                  |                               | 20 ו<br>106 |
| 10.1. Conjunctivitis                                                                                                                                                                                                                 |                               | 120<br>197  |
| 10.3. Nasal Polyps                                                                                                                                                                                                                   |                               |             |
| 10.4. Adenoid hypertrophy                                                                                                                                                                                                            |                               |             |
| 10.5. Tubal Dysfunction                                                                                                                                                                                                              |                               |             |
| 10.6. Otitis Media with Effusion (OME)                                                                                                                                                                                               |                               |             |
| 10.7 Chronic cough                                                                                                                                                                                                                   |                               | 130         |
| 10.8. Laryngitis                                                                                                                                                                                                                     |                               | 130         |
| 10.9. Gastroesophagal reflux (GER)                                                                                                                                                                                                   |                               | 130         |
| 11. Rhinitis in children                                                                                                                                                                                                             |                               | 131         |
| 11.1. The atopic march                                                                                                                                                                                                               |                               | 131         |
| 11.2. Epidemiology of rhinitis in pre-school children                                                                                                                                                                                |                               |             |
| 11.3. Diagnosis                                                                                                                                                                                                                      |                               |             |
| 11.3.1. Pre-school children                                                                                                                                                                                                          |                               |             |
| 11.3.2. Older children                                                                                                                                                                                                               |                               |             |
| 11.4. Treatment                                                                                                                                                                                                                      |                               |             |
| 11.4.1. Pharmacologic Treatment                                                                                                                                                                                                      |                               |             |
| 11.4.2. Non-Pharmacologic Treatment                                                                                                                                                                                                  |                               | 134         |
|                                                                                                                                                                                                                                      |                               |             |
|                                                                                                                                                                                                                                      |                               |             |

# List of abbreviations

AAAAI: American Academy of Allergy, Asthma and Immunology ABPA: allergic bronchopulmonary aspergillosis ACAAI: American College of Allergy, Asthma and Immunology AGREE: Appraisal of Guideline Research & Evaluation AIA: aspirin-induced asthma AIANE: European Network on Aspirin-Induced Asthma ANAES: Agence Nationale de l'Accréditation et d'Evaluation en Santé AOM: acute otitis media AQLQ questionnaire: asthma quality-of-life questionnaire ARIA: Allergic Rhinitis and its Impact on Asthma ATS: American Thoracic Society BCG: Bacille de Calmette et Guérin Bet v 1: Betula verucosa antigen 1 (major birch pollen allergen) CAM: complementary and alternative medicine CD: Cluster of Differentiation CF: cystic fibrosis CFTR: cystic fibrosis transmembrane conductance regulator CNS: central nervous system CO: carbon monoxyde CO<sub>2</sub>: carbon dioxide COPD: chronic obstructive pulmonary disease CPAP: continuous positive airway pressure CRD: chronic respiratory diseases CRS: chronic rhinosinusitis CT-scan: computed tomography scan CXCR: CXC chemokine receptor CysLT: cysteinyl leukotrienes DALY: disability-adjusted life years Der f: Dermatophagoides farinae Der p 1: Dermatophagoides pteronyssinus antigen 1 (major HDM allergen) DPT: Dipheteria-Tetanus-Pertussis EAACI: European Academy of Allergology and Clinical Immunology EBM: evidence-based medicine ECRHS: European Community Respiratory Health Survey ECM: Extracellular matrix ECP: eosinophil cationic protein EFA: European Federation of Allergy & Airway diseases patients association EIA: exercise-induced asthma EIB: exercise-induced bronchoconstriction Equ c: Equus caballus (horse) ETS: environmental tobacco smoke Eur m: Euroglyphus maynei EVH: Eucapnic Voluntary Hyperventilation FceRI: high affinity receptor for IgE FceRII: low affinity receptor for IgE (CD23) Fel d 1: Felix domesticus allergen 1 (major cat allergen) FEV<sub>1</sub>: forced expiratory volume in 1 second FLAP: 5-lipoxygenase (LO) activating protein FVC: forced vital capacity GARD: WHO Global Alliance against chronic Respiratory Diseases GER: gastroesophageal reflux GM-CSF: granulocyte, monocyte colony stimulating factor GR: alucocorticosteroid receptor GRADE: Grading of Recommendations Assessment, Development and Evaluation GRE: glucocorticosteroid receptor responsive element HDM: house dust mite HEPA: High Efficiency Parcticulate Air Filter HETE: hydroxyeicosatetraenoic acid HPA axis: hypothalamic-pituitary-adrenal axis HPETE: hydroperoxyeicosatetraenoic acid HRQLQ: Health-related quality of life IAR: intermittent allergic rhinitis IPAG: International Primary Care Airways Group IPCRG: International Primary Care Respiratory Group ISAAC: International Study on Asthma and Allergy in Childhood IU: International Unit IUIS: International Union of Immunological Societies Lep d: Leptidoglycphus destructor LTC<sub>4</sub>: leukotriene C<sub>4</sub> LTD<sub>4</sub>: leukotriene D<sub>4</sub>

LRT: lower respiratory tract

mAb: monoclonal antibody MAS: German Multicenter Allergy Study MMR: Measle-Mumps-Rubella MMPs: Matrix Metallo Proteinases mRNA: messenger ribonucleic acid Mus m: Mus musculus NANC: non-adrenergic, non-cholinergic NAR: nasal airway resistance NARES: non-allergic rhinitis with eosinophilia syndrome NHANES II: second National Health and Nutrition Examination Survey (U.S.A.) NIH: National Institutes of Health NO: nitric oxide NO2: nitrogen dioxide NP: nasal polyp NSAID: non-steroidal anti-inflammatory agent OAD: occupational asthma OME: otitis media with effusion OR: odds ratio Ory c: Oryctolagus cuniculus OSAS: obstructive sleep apnoea syndrome OTC: over the counter PADQLQ: Paediatric Allergic Disease Quality of Life Questionnaire PCR: polymerase chain reaction PDGF: platelet derived growth factor PedsQL : pediatric quality-of-life inventory PEF: peak expiratory flow PEFR: peak expiratory flow rate PER: persistent allergic rhinitis PG: prostaglandin Phl p: Phleum pratense PIAMA: Prevention and Incidence of Asthma in Mite Allergy PM10: particulate matter less than 10 µm PNIF: peak nasal inspiratory flow PRIST: paper radio-immunosorbent test PRN: as needed QALY: quality-adjusted life years QOL: quality-of-life QTc: QT interval Rat n: Rattus norvegicus RAST: radio-allergo-sorbent test RCT: randomized controlled trial RQLQ: rhinoconjunctivitis quality-of-life questionnaire RSV: respiratory syncytial virus SAPALDIA: Swiss Study on Air Pollution and Lung Diseases in Adults SCARPOL: Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Air Pollution, Climate and Pollen SCIT: subcutaneous immunotherapy SF36: medical outcome short form 36 questions SIGN: Scottish intercollegiate network SIT: specific immunotherapy SLIT: sublingual immunotherapy SO<sub>2</sub>: sulfur dioxide Th: T helper lymphocyte UDA: Usual Daily Activity URT: upper respiratory tract VAS: visual analogue scale VCAM-1: vascular cellular adhesion molecule 1 VOC: volatile organic compound WHO: World Health organization WRAD: work-related occupational disease

# **1. Introduction**

Allergic rhinitis is a symptomatic disorder of the nose induced after allergen exposure due to an IgE-mediated inflammation of the membranes lining the nose [1]. It was defined in 1929 [2]: "The three cardinal symptoms in nasal reactions occurring in allergy are sneezing, nasal obstruction and mucous discharge."

Allergic rhinitis is a global health problem that causes major illness and disability worldwide. Patients from all countries, all ethnic groups and all ages suffer from allergic rhinitis. Allergic rhinitis affects social life, sleep, school and work. The economic impact of allergic rhinitis is often underestimated because the disease does not induce elevated direct costs. However, the indirect costs are substantial [1]. Both allergic rhinitis and asthma are systemic inflammatory conditions and often are co-morbidities.

Although asthma and other forms of allergic diseases have been described in the Antiquity, "hay fever" is surprisingly modern. Very rare descriptions can be traced back to Islamic texts of the 9th century and European texts of the 16th century. It was only in the early 19th century that the disease was carefully described and at that time was regarded as most unusual [3]. In the 19<sup>th</sup> Century, the disease followed the industrialization of Westernized countries [4]. By the end of the 19th century it had become commonplace in both Europe and North America. However, the prevalence of allergic rhinitis was still low and has considerably increased during the past 50 years. In some countries, over 50% of adolescents are reporting symptoms of allergic rhinitis [5]. Using a conservative estimate, allergic rhinitis occurs in over 500 million people around the world. The prevalence of allergic rhinitis is increasing in most countries in the world, and particularly in areas with low or medium levels of prevalence. However, it may be plateauing or even decreasing in the highest prevalence areas. Rhinitis and allergic diseases are now taken seriously and the European Union [6] or countries such as Canada have specific programs to better understand, manage and prevent allergic diseases.

Risk factors for allergic rhinitis are well identified. In the Middle of the 19<sup>th</sup> century, the cause of hay fever was ascribed to pollens [7, 8]. Indoor and outdoor allergens as well as occupational agents cause rhinitis and other allergic diseases. The role of indoor and outdoor pollution is probably very important, but has yet to be fully understood both for the occurrence of the disease and its manifestations.

The diagnosis of allergic rhinitis is often easy, but in some cases it may cause problems and many patients are still under-diagnosed, often because they do not perceive the symptoms of rhinitis as a disease impairing social life, school and work.

The management of allergic rhinitis is well established and many guidelines have been issued but the first ones were not evidence-based [9-11].

# 1.1. The ARIA workshop

In 1999, during the ARIA (Allergic Rhinitis and its Impact on Asthma) WHO workshop, the suggestions were made by a panel of experts and based on evidence using an extensive review of the literature available up to December 1999 [1]. The statements of evidence for the development of these guidelines have followed WHO rules and are based on those of Shekelle et al [12].

The second important achievement of ARIA was to propose a new classification for allergic rhinitis which was subdivided into "intermittent" or "persistent" disease [1].

Moreover, it is now recognized that allergic rhinitis comprises more than the classical symptoms of sneezing, rhinorrhea and nasal obstruction. It is associated with impairments in how patients function in day-to-day life. The severity of allergic rhinitis was therefore

classified as "mild" or "moderate/severe" according to symptoms but also to quality-of-life [1].

Another important aspect of the ARIA guidelines was to consider co-morbidities of allergic rhinitis. The eye involvement in allergic rhinitis has been described for a long time [13]. The nasal airways and their closely associated paranasal sinuses are an integral part of the respiratory tract [1, 14-16]. In the second century, *Claudius Galenus*, one of the fathers of modern respiratory physiology, defined the nose as a "respiratory instrument" in his work *De usu partium* (on the usefulness of the [body] parts [17]. The co-morbidities between the upper and lower airways were described with the clinical description of allergic rhinitis [3, 8]. The nasal and bronchial mucosa present similarities and one of the most important concepts regarding nose-lung interactions is the functional complementarity [14]. Interactions between the lower and the upper airways are well known and have been extensively studied since 1990. Over 80% of asthmatics have rhinitis [18] suggesting the concept of "one airway one disease" although there are differences between rhinitis and asthma [19, 20].

The ARIA document was intended to be a state-of-the-art for the specialist as well as for the general practitioner and other health care professionals

- To update their knowledge of allergic rhinitis.
- To highlight the impact of allergic rhinitis on asthma.
- To provide an evidence-based documented revision on diagnostic methods.
- To provide an evidence-based revision on treatments./
- To propose a stepwise approach to management.

The ARIA document was not intended to be a standard-of-care document for individual countries. It was provided as a basis for physicians, health care professionals and organizations involved in the treatment of allergic rhinitis and asthma in various countries to facilitate the development of relevant local standard-of-care documents for their patients.

The ARIA workshop held at the World Health Organization proposed the following recommendations (Table 1):

### Table 1 – Recommendations of the ARIA workshop

- 1- Allergic rhinitis is a major chronic respiratory disease due to its:
  - Prevalence
  - Impact on quality of life
  - Impact on work/school performance and productivity
  - Economic burden
  - Links with asthma
- 2- In addition, allergic rhinitis is associated with sinusitis and other co-morbidities such as conjunctivitis
- 3- Allergic rhinitis should be considered as a risk factor for asthma along with other known risk factors
- 4- A new subdivision of allergic rhinitis has been proposed:
  - Intermittent (IAR)
  - Persistent (PER)
- 5- The severity of allergic rhinitis has been classified as "mild' and "moderate/severe" depending on the severity of symptoms and quality-of-life outcomes
- 6- Depending on the subdivision and severity of allergic rhinitis, a stepwise therapeutic approach has been proposed
- 7- The treatment of allergic rhinitis combines:
  - Allergen avoidance (when possible)
  - Pharmacotherapy
  - Immunotherapy

- Education

- 8- Patients with persistent allergic rhinitis should be evaluated for asthma by history, chest examination and, if possible and when necessary, the assessment of airflow obstruction before and after bronchodilator
- 9- Patients with asthma should be appropriately evaluated (history and physical examination) for rhinitis.
- 10- A combined strategy should be ideally used to treat the upper and lower airway diseases in terms of efficacy and safety.

# **1.2.** Need for an ARIA update

An update of the ARIA guidelines is needed because:

- A large number of papers have been published within the past 7 years extending our knowledge on the epidemiology, diagnosis, management and co-morbidities of allergic rhinitis. Other guidelines have been produced since 1999 [21], but they did not review extensively the ongoing literature using an evidence-based model.
- The ARIA recommendations were proposed by an expert group and needed to be validated in terms of classification and management.
- New evidence-based systems are proposed to guide recommendations and include safety and costs as well as efficacy of treatments [22, 23].
- Moreover, there were gaps in our knowledge in the first ARIA document. In particular,
  - Some aspects of treatment like complementary and alternative medicine were not appropriately discussed.
  - The links between upper and lower airways in developing countries and deprived areas have not been sufficiently developed even though, in the ARIA document, a section was written on this subject in collaboration with the UNION (formerly IUATLD).
  - $\circ$  Sports and rhinitis in athletes.  $\checkmark$
  - Rhinitis and its links with asthma in pre-school children.

# **1.3.** Development of the ARIA update

The ARIA update was started in 2004. Several chapters of ARIA were extensively reviewed in an evidence-based model, and papers were published (or submitted) in peerreviewed journals: tertiary prevention of allergy, complementary and alternative medicine, pharmacotherapy and anti-IgE treatment, allergen-specific immunotherapy, links between rhinitis and asthma and mechanisms of rhinitis [24-28].

There was then a need for a global document based on the published papers which would highlight the interactions between the upper and the lower airways in order to:

- Develop an evidence-based global document on a key problem of respiratory medicine • including diagnosis, epidemiology, common risk factors, management and prevention.
- Propose educational materials for health care professionals and patients. •
- Meet the objectives of the WHO Global Alliance against Chronic Respiratory Diseases • (GARD) [29] which will help to coordinate the efforts of the different GARD organizations towards a better prevention and management of chronic respiratory diseases (CRD), increase CRD awareness and also fill some of the gaps in knowledge.
- Focus on the prevention of chronic respiratory and allergic diseases. •
- Highlight gaps in knowledge, particularly in developing countries and deprived areas. •
- Prepare an executive summary and pocket guide for physicians, patients and health care professionals.

ry a et guide for

# 2. Definition and classification of rhinitis

# **2.1. Introduction**

Rhinitis is defined as an inflammation of the lining of the nose and is characterized by nasal symptoms including anterior or posterior rhinorrhea, sneezing, nasal blockage and/or itching of the nose. These symptoms occur during two or more consecutive days for more than one hour on most days [9].

Allergic rhinitis is the most common form of non-infectious rhinitis and is associated with an IgE-mediated immune response against allergens. It is often associated with ocular symptoms.

Several non-allergic conditions can cause similar symptoms: infections, hormonal imbalance, physical agents, anatomical anomalies and the use of certain drugs [30]. Rhinitis is therefore classified as shown in (Table 2) [1]. The differential diagnosis of rhinitis is presented in (Table 3) [1].

Since the nasal mucosa is continuous with that of the paranasal sinuses, congestion of the ostia may result in sinusitis which does not exist without rhinitis. The term "rhinosinusitis" should replace "sinusitis" [31].

Vasomotor rhinitis is a term which is not used in this document since vasomotor symptoms can be caused by allergic and non-allergic rhinitis.

#### Table 2 - Classification of rhinitis

From [1]

| <ul> <li>Infectious</li> </ul> |
|--------------------------------|
| viral                          |
| bacterial                      |
| other infectious agents        |
| •Allergic                      |
| Intermittent                   |
| Persistent                     |

 Occupational Intermittent Persistent Orug-induced aspirin other medications Hormonal Other causes

NARES Irritants Food Emotional Atrophic •Idiopathic

#### Table 3 - Differential diagnosis of allergic rhinitis

From [1]

| <ul> <li>Rhinosinusitis with or without nasal polyps</li> </ul> |
|-----------------------------------------------------------------|
| Mechanical Factors                                              |
| Deviated septum                                                 |
| Hypertrophic turbinates                                         |
| Adenoidal hypertrophy                                           |
| Anatomical variants in the ostiomeatal                          |
| complex                                                         |
| Foreign bodies                                                  |
| Choanal atresia                                                 |
| •Tumours                                                        |
| Benign                                                          |
| Malignant                                                       |
| <ul> <li>Granulomas</li> </ul>                                  |
| Wegener's Granulomatosis                                        |
| Sarcoid                                                         |
| Infectious                                                      |
|                                                                 |

Malignant - midline destructive granuloma •Ciliary defects

•Cerebrospinal Rhinorrhea

# 2.2. Allergic rhinitis

# Definition and classification of allergic rhinitis

• Allergic rhinitis is clinically defined as a symptomatic disorder of the nose induced after allergen exposure by an IgE-mediated inflammation

();

- Allergic rhinitis is subdivided into intermittent or persistent disease
- The severity of allergic rhinitis can be classified as "mild" or "moderate/severe"
- Allergic rhinitis impairs quality-of-life, sleep, school and work
- Many non-allergic triggers induce nasal symptoms which mimic allergic rhinitis. They include drugs (aspirin and other non-steroidal anti-inflammatory agents), occupational agents, foods, physical, emotional and chemical factors, and viral infections

# 2.2.1. Definition of allergic rhinitis

## 2.2.1.1. Clinical definition

Symptoms of allergic rhinitis include rhinorrhea, nasal obstruction [32], nasal itching and sneezing which are reversible spontaneously or with treatment [2, 33-36]. Post-nasal drip mainly occurs either with profuse anterior rhinorrhea in allergic rhinitis [37] or without significant anterior rhinorrhea in chronic rhinosinusitis [38, 39]. Pre-school children may just have nasal obstruction. However, nasal obstruction as the only symptom is very rarely associated with allergy. Patients with non-allergic rhinitis may have similar symptoms [40].

Allergic rhinitis is subdivided into "intermittent" or "persistent" disease. The severity of allergic rhinitis can be classified as "mild" or "moderate/severe" [1].

## 2.2.1.2. Definition for epidemiologic studies

The clinical definition of rhinitis is difficult to use in the epidemiologic settings of large populations where it is impossible to visit every person or to obtain the laboratory evidence of each immune response. However, the standardization of the definition of rhinitis in epidemiological studies is of crucial importance, especially when comparing the prevalence between studies.

Initial epidemiologic studies have assessed allergic rhinitis on the basis of simple "working definitions". Various standardized questionnaires have been used to this effect [41, 42].

- The first questionnaires assessing seasonal allergic rhinitis dealt with "nasal catarrh" (British Medical Research Council, 1960) [43] and "runny nose during spring" (British Medical Research Council, 1962) [44].
- Questions introducing the diagnostic term of "seasonal allergic rhinitis" were successively used: "Have you ever had seasonal allergic rhinitis?" or "Has a doctor ever told you that you suffer from seasonal allergic rhinitis?"
- In the ECRHS (European Community Respiratory Health Survey) full-length questionnaire, the question asked on rhinitis was: "Do you have any nasal allergies including "seasonal allergic rhinitis"?" [45]. In order to identify the responsible allergen, the ECRHS study has included potential triggers of the symptoms. However, this question is not sensitive enough and some patients with non-allergic rhinitis answer "yes".
- There are however problems with questionnaires. Many patients poorly perceive nasal symptoms of allergic rhinitis: some exaggerate symptoms whereas many others tend to dismiss the disease [46]. Moreover, a large proportion of rhinitis symptoms are not from allergic origin [47]. In the SAPALDIA (Swiss Study on Air Pollution and Lung Diseases in Adults) study, the prevalence of current seasonal allergic rhinitis varied between 9.1%

(questionnaire answer and a positive skin prick test to at least one pollen) and 14.2% (questionnaire answer only).

- Diagnostic criteria affect the reported prevalence rates of rhinitis [48-50].
- A score considering most of the features (clinical symptoms, season of the year, triggers, parental history, individual medical history, perceived allergy) of allergic rhinitis has recently been proposed [51]. Using the doctor's diagnosis (based on questionnaire, examination and skin tests to common aeroallergens) as a gold standard, these scores had good positive and negative predictive values (84% and 74%, respectively) in the identification of patients suffering from allergic rhinitis. Symptoms of perennial rhinitis have been defined as frequent, non-seasonal, nasal or ocular ("rhinoconjunctivitis").
- In one study, the length of the disease was also taken into consideration in order to differentiate perennial allergic rhinitis from the "common cold" (viral upper respiratory infections) [52].
- The GA<sup>2</sup>LEN (Global Allergy and Asthma European Network) questionnaire on allergy is given in Annex 1.

Objective tests for the diagnosis of IgE-mediated allergy (skin prick test, serum specific IgE) can also be used [53-55]. The diagnostic efficiency of IgE, skin prick tests and Phadiatop<sup>®</sup> was estimated in 8,329 randomized adults from the SAPALDIA. The skin prick test had the best positive predictive value (48.7%) compared to the Phadiatop<sup>®</sup> (43.5%) or total serum IgE (31.6%) for the epidemiologic diagnosis of allergic rhinitis [56]. Future working definitions may encompass not only clinical symptoms and immune response tests but also nasal function and eventually specific nasal challenge [57].

# 2.2.2. Intermittent (IAR) and persistent allergic rhinitis (PER)

Previously, allergic rhinitis was subdivided, based on the time of exposure, into seasonal, perennial and occupational [9, 10, 58, 59]. Perennial allergic rhinitis is most frequently caused by indoor allergens such as dust mites, molds, insects (cockroaches) and animal danders. Seasonal allergic rhinitis is related to a wide variety of outdoor allergens such as pollens or molds. However, this classification is not entirely satisfactory as:

- In certain areas, pollens and molds are perennial allergens (e.g. grass pollen allergy in Southern California and Florida [60] or *Parietaria* pollen allergy in the Mediterranean area [61]).
- Symptoms of perennial allergy may not always be present all year round. This is particularly the case for a large number of patients allergic to house dust mites suffering only from mild or moderate/severe IAR [62-65]. This is also the case in the Mediterranean area where levels of house dust mite allergen are low in the summer [66].
- The majority of patients are sensitized to many different allergens and therefore exposed throughout the year [33, 62, 67-69]. In many patients, perennial symptoms are often present and patients present seasonal exacerbations when exposed to pollens or molds. It appears therefore that this classification is not adherent to real life.
- Climatic changes modify the time and duration of the pollen season which may make predictions difficult.
- Allergie patients travel and may be exposed to the sensitizing allergens in different times of the year.
- Some patients allergic to pollen are also allergic to molds and it is difficult to clearly define the pollen season [70].
- Some patients sensitized only to a single pollen species present perennial symptoms [71].
- Due to the priming effect on the nasal mucosa induced by low levels of pollen allergens [72-77] and minimal persistent inflammation of the nose in patients with symptom-free

rhinitis [64, 78, 79], symptoms do not necessarily occur strictly in conjunction with the allergen season.

• Non-specific irritants such as air pollution may aggravate symptoms in symptomatic patients and induce symptoms in asymptomatic patients with nasal inflammation [80].

Thus, a major change in the subdivision of allergic rhinitis was proposed in the ARIA document with the terms "intermittent" (IAR) and "persistent" (PER) [1]. It was shown that the classic types of seasonal and perennial rhinitis cannot be used interchangeably with the new classification of intermittent/persistent, as they do not represent the same stratum of disease. Thus, "intermittent" and "persistent" are not synonymous with "seasonal" and "perennial" [36, 62, 67, 81-83]. In the original ARIA document, the number of consecutive days used to classify patients with persistent rhinitis was more than 4 a week [1]. However, it appears that patients with persistent rhinitis usually suffer almost every day [84].

Whereas the majority of patients present symptoms unrelated to seasons, it is possible to discriminate pollen seasons in some patients. In this case, patients present symptoms during defined times of the year or present mild persistent rhinitis during most months of the year and have more severe symptoms when exposed to high concentrations of allergens during pollen seasons.

Since most patients are polysensitized, it appears that the ARIA classification is closer to the patient's needs than the previous one [85].

Moreover, persistent rhinitis does not necessarily result from allergic origin [86].

# 2.2.3. Severity of allergic rhinitis

#### 2.2.3.1. Classical symptoms and signs

Allergic rhinitis is characterized by subjective symptoms which may be difficult to quantify because they depend largely on the patient's perception.

#### 2.2.3.2. Symptoms associated with social life, work and school

It is now recognized that allergic rhinitis comprises more than the classical symptoms of sneezing, rhinorrhea and nasal obstruction. It is associated with impairments in how patients function in day-to-day life. Impairment of quality-of-life is seen in adults [10, 87] [88] and in children [89-92]. Patients may also suffer from sleep disorders, emotional problems, as well as by impairment in activities and social functioning [93].

Poorly-controlled symptoms of allergic rhinitis may contribute to sleep loss or disturbance [94-104]. Moreover, H<sub>1</sub>-antihistamines with sedative properties can increase sedation in patients with allergic rhinitis [105, 106]. Although sleep apnea syndrome has been associated with nasal disturbances [107-109], it is unclear as to whether allergic rhinitis is associated with sleep apnea [100, 107, 110]. It has been shown that patients with moderate/severe symptoms of intermittent or persistent allergic rhinitis have an impaired sleep pattern by comparison to normal subjects and patients with mild rhinitis [111].

It is also commonly accepted that allergic rhinitis impairs work [10, 84, 112, 113] and school performance [114-116].

In several studies, the severity of allergic rhinitis assessed using quality-of-life measures, work productivity questionnaires or sleep questionnaires was found to be somewhat independent of duration [67, 84, 111, 117].

#### 2.2.3.3. Objective measures of severity

Objective measures of the severity of allergic rhinitis include:

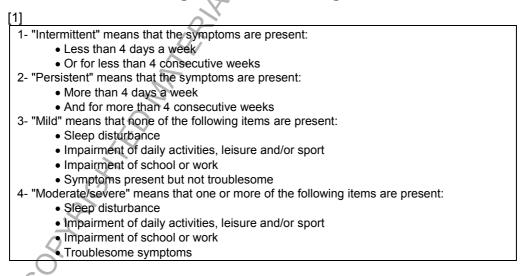
- Symptom scores.
- Visual analogue scales (VAS) [118, 119] (Figure 1).

Figure 1 : Assessment of rhinitis severity using a visual analogue scale

from [119] "Are you bothered by your rhinitis ?" Not bothered at all

10 cm

Extremely bothered


- Measurements of nasal obstruction, such as peak inspiratory flow measurements, acoustic rhinometry and rhinomanometry [120-122].
- Measurements of inflammation such as NO measurements, cells and mediators in nasal lavages, cytology and nasal biopsy [121, 123].
- Reactivity measurements such as provocation with histamine, methacholine, allergen, hypertonic saline, capsaicin or cold dry air [124].
- Measurements of the sense of smell [125].

Measurements of VAS, nasal obstruction and smell are used in clinical practice. The other measurements are primarily used in research.

### 2.2.3.4. ARIA classification of allergic rhinitis

In the ARIA classification, allergic rhinitis can be classified as "mild" and "moderate/severe" depending on the severity of symptoms and their impact on social life, school and work (Table 4). It has also been proposed to classify the severity as "mild", "moderate" and "severe" [36, 126, 127], but it seems that this proposal makes it more complex for the practicing physician without bringing significant improvement to the patient since this more complex classification does not translate to a difference in therapeutic options.

#### Table 4 - Classification of allergic rhinitis according to ARIA



The severity of allergic rhinitis is independent of the treatment. In asthma, the control level is also independent of asthma medications [128-132]. Although such an independent relationship was suspected in a study on allergic rhinitis [67], this very important finding was confirmed in a recent study in which it was found that the severity of rhinitis is independent of its treatment [119]. Thus, as for asthma, one of the problems to consider is to replace "severity" by "control", but sufficient data are not yet available.

# 2.3. Other causes of rhinitis

## 2.3.1. Infectious rhinitis

For infectious rhinitis, the term rhinosinusitis is usually used. Rhinosinusitis is an inflammatory process involving the mucosa of the nose and one or more sinuses. The mucosa of the nose and sinuses form a continuum and thus more often than not the mucous membranes of the sinus are involved in diseases which are primarily caused by an inflammation of the nasal mucosa. For this reason infectious rhinitis is discussed under rhinosinusitis.

### 2.3.2. Work-related rhinitis

Occupational rhinitis arises in response to an airborne agent present in the workplace and may be due to an allergic reaction or an irritant response [133]. Causes include laboratory animals (rats, mice, guinea-pigs, etc.) [134], wood dust, particularly hard woods (mahogany, Western Red Cedar, etc.) [135], mites [136], latex [137], enzymes [138], grain (bakers and agricultural workers) [139, 140] and chemicals such as acid anhydrides, platinum salts [141], glues and solvents [142].

Occupational rhinitis is frequently under-diagnosed due to under-reporting and/or a lack of physician awareness [133, 143]. Diagnosis is suspected when symptoms occur in relation to work. Differentiating between immunological sensitization and irritation may be difficult. Given the high prevalence of rhinitis in the general population, whatever the cause, then objective tests confirming the occupational origin are essential [144]. Measures of inflammatory parameters via nasal lavage and the objective assessment of nasal congestion both offer practical means of monitoring responses [133]. Growing experience with acoustic rhinometry and peak nasal inspiratory flow suggests that these methods may have a role in monitoring and diagnosing [145]. The surveillance of sensitized workers may allow an early detection of occupational asthma.

# 2.3.3. Drug-induced rhinitis

Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) commonly induce rhinitis and asthma (Table 5). The disease has recently been defined as AERD (aspirin exacerbated respiratory disease) [146]. In a population-based random sample, aspirin hypersensitivity was more frequent among subjects with allergic rhinitis than among those without (2.6% vs. 0.3%) [147]. In about 10% of adult patients with asthma, aspirin and other NSAID that inhibit cyclooxygenase (COX) enzymes (COX-1 and -2) precipitate asthmatic attacks and naso-ocular reactions [148]. This distinct clinical syndrome, called aspirininduced asthma, is characterized by a typical sequence of symptoms: an intense eosinophilic inflammation of the nasal and bronchial tissues combined with an overproduction of cysteinyl-leukotrienes (CysLT) [149] and other prostanoids [150, 151]. After the ingestion of aspirin or other NSAIDs, an acute asthma attack occurs within 3 hours, usually accompanied by profuse rhinorrhea, conjunctival injection, periorbital edema and sometimes a scarlet flushing of the head and neck. Aggressive nasal polyposis and asthma run a protracted course, despite the avoidance of aspirin and cross-reacting drugs [152]. Blood eosinophil counts are raised and eosinophils are present in nasal mucosa and bronchial airways. Specific anti-COX-2 enzymes were usually well tolerated in aspirin-sensitive patients [149] but many are no longer marketed.

# Table 5 - List of common NSAIDs that cross-react with aspirin in respiratory reactions

| Generic names |              | Brand names              |  |
|---------------|--------------|--------------------------|--|
| Ami           | nophenazone  | Isalgin                  |  |
| Diclo         | ofenac       | Voltaren, Cataflam       |  |
| Diflu         | nisal        | Dolbid                   |  |
| Etoc          | olac         | Lodine                   |  |
| Fen           | oprofen      | Nalfon                   |  |
|               | piprofen     | Ansaid                   |  |
| Ibup          | rofen        | Motrin, Rufen, Advil     |  |
|               | methacin     | Indocid, Metindol        |  |
| Keto          | profen       | Orudis, Oruval           |  |
| Keto          | ralac        | Toradol                  |  |
| Klofe         | ezon         | Perclusone               |  |
| Mefe          | enamic acid  | Ponstel, Mefacit         |  |
| Meta          | amizol       | Analgin,                 |  |
| Nab           | umetone      | Relafen                  |  |
| Nap           | roxen        | Naprosyn, Anaprox, Aleve |  |
| Nora          | amidopyrine, | Novalgin                 |  |
|               | prozin       | Daypro                   |  |
|               | ohenbutazone | Tanderil                 |  |
|               | kicam        | Feldene                  |  |
| Prop          | ylphenazone  | Pabialgin, Saridon       |  |
|               | ndac         | Cilnoril                 |  |
|               | netin        | Tolectin                 |  |

\* *Paracetamol* is well tolerated by the majority of patients, especially in doses not exceeding 1000 mg/day. *Nimesulide* and *Meloxicam* in high doses may precipitate nasal and bronchial symptoms [153].

A range of other medications is known to cause nasal symptoms. These include:

- Reserpine [154].
- Guanethidine [155].
- Phentolamine [156].
- Methyldopa [155].
- ACE inhibitors [157].
- $\alpha$ -adrenoceptor antagonists.
- Intraocular or oral ophthalmic preparations of β-blockers [158].
- Chlorpromazine.
- Oral contraceptives.

The term *rhinitis medicamentosa* [159-161] applies to the rebound nasal obstruction which develops in patients who use intranasal vasoconstrictors chronically. The pathophysiology of the condition is unclear; however, vasodilatation and intravascular edema have both been implicated. The management of *rhinitis medicamentosa* requires the withdrawal of topical decongestants in order to allow the nasal mucosa to recover, followed by treatment of the underlying nasal disease [162].

Cocaine sniffing is often associated with frequent sniffing, rhinorrhea, diminished olfaction and septal perforation [163, 164].

Amongst the multiuse aqueous nasal, ophthalmic and otic products, benzalkonium chloride is the most common preservative. Intranasal products containing this preservative appear to be safe and well tolerated for both long- and short-term clinical use [165].

### 2.3.4. Hormonal rhinitis

Changes in the nose are known to occur during the menstrual cycle [166], puberty, pregnancy [167, 168] and in specific endocrine disorders such as hypothyroidism [169] and

acromegaly [170]. Hormonal imbalance may also be responsible for the atrophic nasal change in post-menopausal women.

A persistent hormonal rhinitis or rhino-sinusitis may develop in the last trimester of pregnancy in otherwise healthy women. Its severity parallels the blood oestrogen level [171]. Symptoms disappear at delivery.

In a woman with perennial rhinitis, symptoms may improve or deteriorate during pregnancy [172].

# 2.3.5. Nasal symptoms related to physical and chemical factors

Physical and chemical factors can induce nasal symptoms which may mimic rhinitis in subjects with sensitive mucous membranes and even in normal subjects if the concentration of chemical triggers is high enough [173, 174]. Sudden changes in temperature can induce nasal symptoms in patients with allergic rhinitis [175]. Chronic effects of cold dry air are important. Skier's nose (cold, dry air) [176] has been described as a distinct entity. However, the distinction between a normal physiologic response and a disease is not clear and all rhinitis patients may exhibit an exaggerated response to unspecific physical or chemical stimuli. Little information is available on the acute or chronic effects of air pollutants on the nasal mucosa [177].

The alterations of the physiological nasal respiration is of importance for any athlete. The impact of exercise on rhinitis and the effect of rhinitis on exercise received considerable attention before the 1984 Olympics, where evidence indicated that chronic rhinitis frequently occurs and deserves specific management in athletes [178]. Athletes suffering from symptoms of rhinitis were shown to have impaired performances [179]. Many active athletes suffer from allergic rhinitis during the pollen season [180, 181] and most of these receive a treatment for their nasal symptoms.

On the other hand, some conditions induce nasal symptoms. This is the case of the skier's nose, a model of cold-induced rhinitis [176, 182-184] or rhinitis in competitive swimmers who inhale large quantities of chlorine gas or hypochlorite liquid [185-187]. In runners, nasal resistance falls to about half of its resting values. Decongestion begins immediately after starting the running and persists for around 30 minutes after its end [27].

In multiple chemical sensitivities, nasal symptoms such as impaired odor perception may be present [188].

## 2.3.6. Rhinitis in smokers

In smokers, eye irritation and odor perception are more common than in non-smokers [189]. Tobacco smoke can alter the mucociliary clearance [190] and can cause an eosinophilic and "allergic"-like inflammation in the nasal mucosa of non-atopic children [191]. Some smokers report a sensitivity to tobacco smoking including headache, nose irritation (rhinorrhea, nasal congestion, postnasal drip and sneezing) and nasal obstruction [192]. However, in normal subjects, smoking was not found to impair nasal quality-of-life [193]. NARES might be caused by passive smoking inducing an "allergy-like" inflammatory response [194].

# 2.3.7) Food-induced rhinitis

Food allergy is a very rare cause of isolated rhinitis [195]. However, nasal symptoms are common among the many symptoms of food-induced anaphylaxis [195].

On the other hand, foods and alcoholic beverages in particular may induce symptoms by unknown non-allergic mechanisms.

Gustatory rhinitis (hot spicy food such as hot red pepper) [196] can induce rhinorrhea, probably because it contains capsaicin. This is able to stimulate sensory nerve fibers inducing them to release tachykinins and other neuropeptides [197].

Dyes and preservatives as occupational allergens can induce rhinitis [198], but in food they appear to play a role in very few cases [195].

# 2.3.8. NARES and eosinophilic rhinitis

Persistent non-allergic rhinitis with eosinophilia is a heterogeneous syndrome consisting of at least two subgroups: NARES and aspirin hypersensitivity [30].

Non-allergic rhinitis with eosinophilia syndrome (NARES) was defined in the early 1980s [199-201]. Although it probably does not represent a disease entity on its own, it may be regarded as a sub-group of idiopathic rhinitis characterized by the presence of nasal eosinophilia and persistent symptoms of sneezing, itching, rhinorrhea and occasionally a loss of sense of smell in the absence of demonstrable allergy. It occurs in children and adults. Asthma appears to be uncommon but half of the patients show bronchial non-specific hyperreactivity [202]. It has been suggested that NARES may, in some patients, represent an early stage of aspirin-sensitivity [203]. NARES responds usually but not always favorably to intranasal glucocorticosteroids [204].

# 2.3.9. Rhinitis of the elderly

Rhinitis of the elderly, or senile rhinitis as it is called in the Netherlands, is a distinctive feature in the clinical picture of an elderly patient suffering from a persistent clear rhinorrhea without nasal obstruction or other nasal symptoms. Patients often complain of the classical drop on the tip of the nose.

#### **2.3.10. Emotions**

Stress and sexual arousal are known to have effects on the nose probably due to autonomic stimulation.

# 2.3.11. Atrophic rhinitis

Primary atrophic rhinitis is characterized by a progressive atrophy of the nasal mucosa and underlying bone [205], rendering the nasal cavity widely patent but full of copious foulsmelling crusts. It has been attributed to infection with *Klebsiella ozaenae* [206] though its role as a primary pathogen is not determined. The condition produces nasal obstruction, hyposmia and a constant bad smell (ozaenae) and must be distinguished from secondary atrophic rhinitis associated with chronic granulomatosis conditions, excessive nasal surgery, radiation and trauma.

# 2.3.12. Unknown aetiology (idiopathic rhinitis)

Sometimes termed "vasomotor rhinitis", these patients manifest an upper respiratory hyperresponsiveness to non-specific environmental triggers such as changes in temperature and humidity, exposure to tobacco smoke and strong odors.

The limited data available suggest that these patients might present [207]

- Nasal inflammation (in a small number of patients).
- An important role for C-fibers although direct observations explaining this mechanism are lacking.
- Parasympathetic hyperreactivity and/or sympathetic hyporeactivity and/or
- Glandular hyperreactivity .

Some people consider even slight nasal symptoms to be abnormal and seek consequent medical advice. Inquiry into the number of hours spent with daily symptoms may help to determine a distinction between a normal physiologic response and disease. Also, the use of a daily record card to score symptom duration and intensity, combined, if appropriate, with peak nasal inspiratory flow measurements, can provide the physician with more insight into the severity of the disease. Marked discrepancies can be found between the description of the problem at the first visit and data from these daily measurements [208, 209].

# 2.4. Rhinosinusitis

# Definition and classification of rhinosinusitis

- Sinusitis and rhinitis usually coexist and are concurrent in most individuals; thus, the correct terminology for sinusitis is *rhinosinusitis*
- Depending on its duration, rhinosinusitis is classified as acute or chronic (over 12 weeks)
- Symptoms and signs overlie with those of allergic rhinitis
- For the diagnosis of chronic rhinosinusitis (including nasal polyps), an ENT examination is required
- Sinus X-rays are not useful for the diagnosis of chronic rhinosinusitis
- CT scans may be useful to diagnosis and management of chronic rhinosinusitis

Sinusitis and rhinitis usually coexist and are concurrent in most individuals; thus, the correct terminology for sinusitis is now *rhinosinusitis*. The diagnosis of rhinosinusitis is made by several practitioners, including allergologists, otolaryngologists, pulmonologists, primary care physicians and many others. Therefore, an accurate, efficient and accessible definition of rhinosinusitis is required.

Attempts have been made to define rhinosinusitis in terms of pathophysiology, microbiology, radiology, severity of symptoms and their duration [210-212].

Until recently, rhinosinusitis was usually classified, based on duration, into acute, subacute and chronic [212]. This definition does not incorporate the severity of the disease. Also, due to the long timeline of 12 weeks in chronic rhinosinusitis (CRS), it can be difficult to discriminate between recurrent acute and CRS with or without exacerbations.

Due to the large differences in technical possibilities for the diagnosis and treatment of rhinosinusitis/nasal polyps by ENT specialists and non-specialists, subgroups should be differentiated. Epidemiologists need a workable definition that does not impose too many restrictions to study large populations whereas researchers need a set of clearly defined items to describe their patient population accurately. The EP3OS task forces attempted to accommodate these needs by allocating definitions adapted to different situations [31, 213].

# 2.4.1. Clinical definition

Rhinosinusitis (including nasal polyps (NP)) is an inflammation of the nose and the paranasal sinuses characterized by:

#### • Two or more symptoms:

- o Blockage/congestion.
- Discharge: anterior/post nasal drip (which can be discoloured)
- Facial pain/pressure.
- Reduction or loss of smell.
- One of the symptoms should be nasal obstruction or discharge (anterior/posterior nasal drip):

The presenting symptoms of CRS are given in Table 6.

#### Table 6 - Presenting symptoms of chronic rhinosinusitis

adapted from Meltzer et al [214]

| Presenting symptom            | Percentage of<br>patients with symptom |
|-------------------------------|----------------------------------------|
| Nasal obstruction             | 94 %                                   |
| Nasal discharge               | 82 %                                   |
| Facial congestion             | 85 %                                   |
| Facial pain-pressure-fullness | 83 %                                   |
| Loss of smell                 | 68%                                    |
|                               | ~                                      |
| Fatigue                       | 84 %                                   |
| Headache                      | 83 %                                   |
| Ear pain/pressure             | 68 %                                   |
| Cough                         | 65 %                                   |
| Halitosis                     | 53 %                                   |
| Dental pain                   | 50 %                                   |
| Fever                         | 33 %                                   |
| h                             |                                        |

- And endoscopic signs:
  - Polyps and/or
  - Mucopurulent discharge from middle meatus and/or
  - Edema/mucosal obstruction primarily in middle meatus.
- And/or CT changes: Mucosal changes within ostiomeatal complex and/or sinuses.

Computed tomography (CT) of the paranasal sinuses has emerged as the standard test for the assessment of chronic rhinosinusitis, as evidenced by the emergence of several CTbased staging systems. Despite its central role in the diagnosis and treatment planning for chronic rhinosinusitis, the sinus CT represents a "snapshot in time". In chronic rhinosinusitis, the correlation between a CT scan and symptoms is low to non-existent [215, 216]. The most frequently used scoring system for CT scans in chronic rhinosinusitis is the Lund-Mackay score [217]. Overall, the Lund-Mackay score in the general population is not 0. A Lund score ranging from 0 to 5 may be considered within an incidentally "normal" range, and should be factored into clinical decision making [218].

A proposal for the differentiation of acute and chronic rhinosinusitis has been recently published [219] (0).

|                            | Type of rhinosinusitis                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Acute rhinosinusitis                                                                                                                                                                                                                                              | chronic rhinosinusitis                                                                                                                                                                                                                                                                       |                                                                                                                                                                                  |
|                            |                                                                                                                                                                                                                                                                   | without nasal polyps                                                                                                                                                                                                                                                                         | with nasal polyps                                                                                                                                                                |
| Patterns of symptoms       | <ul> <li>Symptoms present for a maximum of 10 d up until a maximum of 28 d</li> <li>Severe disease* (presence of purulence for 3-4 d with high fever) OR</li> <li>Worsening disease (symptoms that initially regress but worsen within the first 10 d)</li> </ul> | Symptoms present for ≥ 12 wk                                                                                                                                                                                                                                                                 | 200 Sti                                                                                                                                                                          |
| Symptoms for<br>diagnosis  | Requires:<br>• Anterior and/or posterior<br>mucopurulent drainage PLUS<br>• Nasal obstruction OR<br>• Facial pain/pressure/fullness                                                                                                                               | Requires ≥2 of the following<br>symptoms:<br>• Anterior and/or posterior<br>mucopurulent drainage<br>• Nasal obstruction<br>• Facial pain/pressure/fullness                                                                                                                                  | Requires ≥2 of the following<br>symptoms:<br>• Anterior and/or posterior<br>mucopurulent drainage<br>• Nasal obstruction<br>• Decreased sense of smell                           |
| Objective<br>documentation | Requires either:<br>• Nasal airway examination for<br>mucopurulent drainage:<br>• Beyond vestibule by either<br>anterior or posterior<br>endoscopy OR<br>• Posterior pharyngeal<br>drainage OR<br>• Radiographic evidence of acute<br>rhinosinusitis              | <ul> <li>Requires both:</li> <li>Rhinoscopy to exclude polyps in<br/>middle meatus and document<br/>presence of inflammation, such<br/>as discolored mucus or edema of<br/>the middle meatus or ethmoid<br/>area AND</li> <li>Evidence of rhinosinusitis on<br/>imaging (CT-scan)</li> </ul> | <ul> <li>Requires both:</li> <li>Rhinosocpy to confirm the presence of bilateral polyps in middle meatus AND</li> <li>Evidence of rhinosinusitis on imaging (CT-scan)</li> </ul> |

# Table 7 - Rhinosinusitis consensus research definitions and clinical trial guidelines

From [219]

# 2.4.1.1. Severity of the disease

The disease can be divided into MILD, MODERATE or SEVERE based on the total severity visual analogue scale (VAS) score (0-10 cm):

MILD = VAS 0-3

MODERATE = VAS 3.1-7

SEVERE = VAS 7.1-10

To evaluate the total severity, the patient is asked to indicate on a VAS the reply to the following question (Figure 2):

## Figure 2 – Assessment of rhinosinusitis severity by a visual analogue scale

How troublesome are your symptoms of rhinosinusitis ?

Not troublesome \_\_\_\_\_ Worst thinkable troublesome \_\_\_\_\_

The severity of rhinosinusitis can also be assessed by using quality-of-life questionnaires [215, 220-227]. However, these different methods of evaluation of rhinosinusitis severity are not always correlated [215, 228].

# **2.4.1.2.** Duration of the disease

The EPOS-3 document proposes to define the disease as acute rhinosinusitis (symptoms lasting for less than 12 weeks and complete resolution of symptoms) and CRS (symptoms lasting for more than 12 weeks without complete resolution of symptoms).

# 2.4.2. Definition for epidemiologic studies

For epidemiologic studies, the definition is based on symptomatology without ENT examination or imaging. However, a considerable overestimation of the disease can be observed when a definition of rhinosinusitis is only based on symptomatology without ENT examination or imaging [229-231].

#### Acute Rhinosinusitis is defined as: 0

- a sudden onset of two or more of the symptoms one of which should be either nasal blockage/obstruction or nasal discharge:
  - Blockage/congestion
  - Discharge anterior/post nasal drip;
  - Facial pain/pressure;
  - Reduction/loss of smell;
- for <12 weeks.
  - with validation by telephone or interview.

Questions on allergic symptoms i.e. sneezing, watery rhinorrhea, nasal itching and itchy watery eyes should be included.

- Common cold/ acute viral rhinosinusitis is defined as an acute rhinosinusitis lasting less than 10 days.
- Acute bacterial rhinosinusitis is defined by an increase of symptoms after 5 days or 0 persistent symptoms after 10 days with less than 12 weeks duration.
- **Chronic Rhinosinusitis/nasal polyps** is defined by: 0
  - Symptoms, one of which should be either nasal blockage/obstruction/congestion or discharge (anterior/posterior nasal drip):
    - Discharge: anterior/post nasal drip.
    - Facial pain/pressure.
    - Reduction or loss of smell.
    - Nasal congestion/obstruction/blockage with
    - Facial pain/pressure, or
    - Reduction/loss of smell •
  - For >12 weeks
  - For >12 weeksWith validation by telephone or interview

Questions on allergic symptoms i.e. sneezing, watery rhinorrhea, nasal itching and itchy watery eyes should be included.

# 2.4.3. Definition for research

For research purposes acute rhinosinusitis is defined as above. Bacteriology (antral tap, middle meatal tap) and/or radiology (X-ray, CT) are advised, but not obligatory.

For research purposes CRS is the major finding and nasal polyposis (NP) is considered a subgroup of this entity. For the purpose of a study, the differentiation between CRS and NP must be based on endoscopy. The research definition is based on the presence of NP and prior surgery.

### Definitions when no previous sinus surgery has been performed:

- Polyposis: bilateral, endoscopically visualized in the middle meatus
- o Chronic rhinosinusitis: bilateral, no visible polyps in the middle meatus, if necessary following decongestant

This definition accepts that there is a spectrum of disease in CRS which includes a polypoid change in the sinuses and/or middle meatus but excludes those with polypoid disease presenting in the nasal cavity to avoid overlap.

Definitions when sinus surgery has been performed: Once surgery has altered the ٠ anatomy of the lateral wall, the presence of polyps is defined as pedunculated lesions as opposed to cobblestoned mucosa > 6 months after surgery on endoscopic examination. Any mucosal disease without overt polyps should be regarded as CRS.

# 2.4.4. Nasal polyposis

Nasal polyps and CRS are often considered as one disease entity, because it seems impossible to clearly differentiate both entities [58, 232-234]. Nasal Polyposis is considered a subgroup of CRS.

e entry, be al Polyposition

# 3. Risk factors

## **Risk factors of allergic rhinitis**

- Allergic rhinitis is a multi-factorial disease induced by gene-environment interactions
- Indoor and outdoor inhalant allergens cause allergic rhinitis
- Major outdoor allergens include pollens and molds
- Major indoor allergens include mites, animal danders, insects and molds
- Food allergens are rarely the cause of isolated nasal symptoms
- Occupational agents can cause rhinitis by allergic and non-allergic mechanisms
- The role of indoor and outdoor air pollutants is probably of importance, but more data are needed to assess their effect
- Socioeconomic differences are reported in allergic diseases, but more data are required before making specific recommendations

Risk factors of rhinitis may intervene at all ages of life and epidemiology has greatly contributed in the exploration of these factors.

# 3.1. Genetics and familial history

Allergic rhinitis is a multifactorial disease with genetic as well as environmental factors influencing disease development. Allergic diseases such as asthma and rhinitis have closely related phenotypes and often occur with atopy [235, 236]. They show strong familial and intra-individual clustering, suggesting overlapping disease aetiology. However, some genetic polymorphisms have been associated with rhinitis alone but problems with the definition of the studied phenotypes, the small size of the population and the lack of reproductibility of the results still prevent a generalization [236-248]. Over the past decade, various antigens of the HLA system have been identified as responsible for seasonal allergic rhinitis [235].

It is clear that the recent increase in the prevalence of allergic rhinitis cannot be due to a change in gene pool.

# 3.2. Early-life risk factors

Sensitization to allergens may occur in early life [249]. However, besides allergens, early-life risk factors have rarely been related to rhinitis [250, 251]. Young maternal age, markers of fetal growth [42, 252-254], multiple gestation [255-257], mode of delivery [258-262], prematurity [263], low birth weight [264, 265], growth retardation [265], hormones during pregnancy [266] and perinatal asphyxia [263] were all inconstantly related to the risk of developing allergic diseases or rhinitis. As a consequence, existing results are contradictory and require confirmation.

The month of birth has been related to allergic rhinitis but findings could have been biased because negative studies have not been published [267-271].

Several environmental co-factors and the so-called hygiene hypothesis may influence the development or prevention of allergic diseases (see 5.2.2).

# 3.3. Ethnic groups

Although some studies have been carried out on asthma, fewer studies have examined the role of ethnic origins in the development of allergic rhinitis. In England, native persons were at a lower risk of developing allergic rhinitis than those born in Asia or the West Indies [272]. Similarly, Maori people suffered more from allergic rhinitis than New Zealanders from English origin [273]. Migrants from developing to industrialized countries seem to be at risk of allergy and asthma development [274]. It appears that lifestyle and environmental factors in western industrialized areas are more important than ethnicity [274-277].

## **3.4.** Allergen exposure

Allergens are antigens inducing and reacting with specific IgE antibodies. They originate from a wide range of animals, insects, plants, fungi or occupational sources. They are proteins or glycoproteins and more rarely glycans as in the case of *Candida albicans* [278].

The allergen nomenclature was established by the WHO/IUIS Allergen Nomenclature Subcommittee [279]. Allergens are designated according to the taxonomic name of their source as follows: the first three letters of the genus, space, the first letter of the species, space and an Arabic number. As an example, Der p 1 was the first *Dermatophagoides pteronyssinus* allergen to be identified. In the allergen nomenclature a definition of "major" and "minor" allergens has been proposed. When over 50% of tested patients have the corresponding allergen-specific IgE, then the allergen can be considered as "major".

Most allergens have associated activities with potent biological functions and can be divided into several broad groups based either on their demonstrable biologic activity or on their significant homology with proteins of a known function [280]. They include enzymes, enzyme inhibitors, proteins involved in transport and regulatory proteins.

#### **3.4.1. Inhalant allergens**

## 3.4.1.1. Role of inhalant allergens in rhinitis and asthma

Aeroallergens are very often implicated in allergic rhinitis and asthma [281-283]. They are usually classified as indoor (principally mites, pets, insects or from plant origin e.g. ficus), outdoor (pollens and molds) or occupational agents.

Classically, outdoor allergens appear to constitute a greater risk for seasonal rhinitis than indoor allergens [284], and indoor allergens a greater risk for asthma and perennial rhinitis [285]. However, studies using the ARIA classification show that over 50% of patients sensitized to pollen suffer from persistent rhinitis [62, 67] and that, in the general population, a large number of patients sensitized to house dust mites have mild IAR [62].

Although there are some concerns [286], the prevalence of IgE sensitization to indoor allergens (house dust mites and cat allergens) is positively correlated with both the frequency of asthma and its severity [287-290]. *Alternaria* [287, 291] and insect dusts [292, 293] have also been found to be linked with asthma and its severity as well as with rhinitis.

The complex modern indoor environment may contribute to an increasing prevalence of atopic diseases. Multiple indoor environmental allergen sources may have a synergistic effect on atopic co-morbidities [294].

Due to climatic conditions there are regional differences between allergens. It is therefore of importance for physicians to determine the allergens of their region.

### 3.4.1.2. Mites

#### **3.4.1.2.1.** - House dust mites

House dust mites make up a large part of house dust allergens and belong to the Pyroglyphidae family; subclass Acari, class of Arachnid, phylum of Arthropods [295, 296]. The most important species are *Dermatophagoides pteronyssinus* (Der p), *Dermatophagoides farinae* (Der f) [297-304], *Euroglyphus maynei* (Eur m) [305-307], *Lepidoglyphus destructor* (Lep d) [308] and *Blomia tropicalis* (Blo t) particularly, but not only, in tropical and sub-

tropical regions [306, 309-314]. Most mite allergens are associated with enzymatic activities [315] which were shown to have direct non-specific actions on the respiratory epithelium [316, 317], some of which may potentiate a Th2 cell response [318].

*Dermatophagoides* and *Euroglyphus* feed on human skin danders which are particularly abundant in mattresses, bed bases, pillows, carpets, upholstered furniture or fluffy toys [319-325]. Their growth is maximal in hot (above 20°C) and humid conditions (80% relative humidity). When humidity is inferior to 50%, mites dry out and die [326]. This is why they are practically non-existent above 1800 meters in European mountains [327, 328] where the air is too dry whereas they are abundant in tropical mountain areas [329, 330].

Even though mites are present in the home all year round, there are usually peak seasons [65, 331, 332]. Many patients present symptoms all year round but with a recrudescence during humid periods [333]. However, many other patients with house dust mite allergy have IAR [62, 64].

House dust mite allergen is contained in faecal pellets  $(10-20 \,\mu\text{m})$ . Airborne exposure occurs with the active disturbance of contaminated fabrics and settles rapidly after disturbance.

Mite allergen in dust is associated with the prevalence of sensitization and control of the disease [334]. The presence of 100 mites per gram of house dust (or 2  $\mu$ g of Der p 1 per gram of dust) is sufficient to sensitize an infant. For around 500 mites or 10  $\mu$ g of Der p 1 per gram of house dust, the sensitized patient shows a greater risk of developing asthma at a later date [335-337]. The higher the number of mites in dust, the earlier the first episode of wheezing [336]. The prevalence of the sensitization to mites in the general population is more important in humid than in dry regions.

#### **3.4.1.2.2. - Other mites**

Storage mites (*Glyciphagus domesticus* and *destructor*, *Tyrophagus putrecentiae Dermatophagoides microceras*, *Euroglyphus maynei* and *Acarus siro*) are present in stocked grains and flour [338]. These species have an importance in the house dust of very damp houses, in tropical environments where the growth of the molds increases their development and in rural habitats. These mites are particularly associated with agricultural allergies [339-342] and can induce persistent rhinitis symptoms [343, 344].

Other species of mites such as spider mites intervene in other professional environments (*Panonychus ulmi* in apple growers, *Panonychus citri* in citrus growers and *Tetranychus urticae* [345-350] and *Ornithonyssus sylviarum* in poultry breeders [351]). In Korea, the citrus red mite (*Panonychus citri*) is also a common sensitizing allergen in children living in rural areas near citrus orchards [352, 353].

#### 3.4.1.3. Pollens

The pollen grain is the male sex cell of the vegetable kingdom. Depending on their mode of transport, one can distinguish anemophilous and entomophilous pollens. The anemophilous pollens, of a very aerodynamic form, are carried by the wind and represent a major danger as they are emitted in large quantities, can travel long distances (hundreds of km) and consequently can affect individuals who are far from the pollen source. However, patients who are nearest to the emission of the pollen generally show the most severe symptoms. The entomophilous pollens are those carried by insects, attracted by colourful and perfumed flowers, from the male to the female flower. The pollens stick to the antennae of the insects. Few pollens are liberated into the atmosphere and there must be a direct contact of the subject with the pollen source to sensitize exposed subjects, as is the case with agriculturists [354] or florists [355]. However, atopic patients may occasionally develop sensitization to these entomophilous pollens [356, 357]. Certain pollens such as dandelion are both entomo- and anemophilous.

The capacity for sensitization to pollens is theoretically universal, but the nature and number of pollens varies with the vegetation, geography, temperature and climate [61, 358-360]. There are important regional differences. Most patients are sensitized to many pollen species [361]. Surprisingly, pollen sensitization is lower in rural than in urban areas whereas the pollen counts are higher in the country [362]. The pollens causing the most common allergies are:

- Grasses that are universally distributed. The grasses pollinate at the end of spring and the beginning of summer, but, in some places such as Southern California or Florida, they are spread throughout the year. Bermuda grass (*Cynodon dactylon*) and Bahia grass (*Paspalum notatum*) do not usually cross-react with other grasses [363].
- Weeds such as the Compositeae plants: mugwort (*Artemisia*) and ragweed (*Ambrosia*) [364-366], *Parietaria*, not only in the Mediterranean area [367-373], *Chenopodium* and *Salsola* in some desert areas [374]. Weeds such as ragweed flower at the end of summer and the beginning of autumn. *Parietaria* often pollinates over a long period of time (March-November) and is considered as a perennial pollen.
- And trees: birch (*Betula*), other Betulaceae [375-381], Oleaceae including the ash (*Fraxinus*) and olive tree (*Olea europea*) [382-384], the oak (*Quercus*), the plane tree (*Platanus*) [385, 386] and Cupressaceae including the cypress tree (*Cupressus*) [387-392], junipers (*Juniperus*) [393], thuyas [394], the Japanese cedar (*Cryptomeria japonica*) [395] and the mountain cedar (*Juniperus ashei*) [396, 397]. Trees generally pollinate at the end of winter and the beginning of spring. However, the length, duration and intensity of the pollinating period often vary from one year to the next sometimes making the diagnosis difficult. Moreover, the change in temperature in Northern Europe has caused earlier birch pollen seasons [398]. Multiple pollen seasons in polysensitized patients are important to consider.

The size of the pollen varies from 10 to 100  $\mu$ m on average. This explains their deposition in the nostrils and, more particularly, the eyes. Most pollen-allergic patients suffer from rhino-conjunctivitis. However, pollen allergens can be borne on submicronic particles [399, 400] and induce and/or contribute to the persistence of rhinitis and asthma. This is particularly the case of asthma attacks occurring during thunderstorms [401-405].

Cross reactivities between pollens are now better understood using molecular biology techniques [406-409]. However, it is unclear as to whether all *in vitro* cross-reactivities observed between pollens are clinically relevant [410]. Major cross reactivities include pollens of the Gramineae family [411-413] except for Bermuda and Bahia grasses [414, 415] and Bahia grass [416], the Oleacea family [382, 417, 418], the Betuleacea family [419, 420] and the Cupressaceae family [421] but not those of the Urticaceae family [422, 423]. Moreover, there is clinically little cross-reactivity between ragweed and other members of the Compositeae family [424-426].

### 3.4.1.4. Animal danders

#### **3.4.1.4.1. - Cat and dog allergens**

The number and variety of domestic animals have considerably increased over the past 30 years, especially in urban environments of western countries. It is estimated that in many European countries, as many as 1 in 4 residences possess a cat. Dogs are found in even greater numbers. The danders and secretions carry or contain powerful allergens capable of causing allergic reactions [427].

Cats and dogs produce major allergens in asthma, rhinitis or rhino-conjunctivitis, cough, but also, more rarely, in urticaria and angioedema.

The principal sources of cat allergen are the sebaceous glands, saliva and the peri-anal glands but the main reservoir is the fur. The major cat allergen (Fel d 1) is transported in the

air by particles inferior to 2.5  $\mu$ m [428] and can remain airborne for long periods. Fel d 1 is also adherent and can contaminate an entire environment for weeks or months after cessation of allergen exposure [429]. It sticks to clothing and can be carried out to areas in which the pet has no access. Fel d 2 is another important allergen.

The major dog allergen (Can f 1) is principally found in the dog's fur and can also be found in the saliva [430], skin and urine [431]. This allergen can be transported in airborne particles.

Cat and dog allergens are present in high amounts in domestic dust, upholstered furnishings and to a lesser degree in mattresses [432, 433]. Moreover, they can be found in various environments where the animals do not live such as day care centers [434, 435], schools [436], public transportation [437], hospital settings [324, 438, 439] and homes without animals [440]. Schools represent a particular risk environment for children allergic to cats as they may develop or worsen symptoms [441], and are a site for the transfer of cat allergen to homes [442]. The low level of cat allergen that exists in many homes without cats is capable of inducing symptoms in very sensitive patients [443].

Patients allergic to cats and dogs frequently display IgE reactivity against allergens from different animals [444, 445]. Albumins have been recognized as relevant cross-reactive allergens [446]. Moreover, there are common, as well as species-restricted, IgE epitopes of the major cat and dog allergens [447].

#### 3.4.1.4.2. - Rodents

Rabbits (*Oryctolagus cuniculus*, Ory c) and other rodents such as guinea pigs, hamsters, rats (*Rattus norvegicus*, Rat n), mice (*Mus musculus*, Mus m) and gerbils are potent sensitizers. The allergens are contained in the fur, urine [134], serum [448] and saliva. Crosssensitizations between rodents are common.

These animals can determine occupational sensitization in laboratory personnel (10-40% of the exposed subjects) [449] and in children of parents occupationally exposed to mice, rats and hamsters [450-452]. Rodent allergens are common in houses either from pets or due to contamination by mouse urine in deprived areas. Exposure to mouse allergen induces high sensitization prevalence in inner-city home environments [453].

Subjects can become sensitized to rodents in less than a year when directly exposed to the animals.

#### 3.4.1.4.3. - Other animals

Most patients allergic to horses (*Equus caballus*, Equ c) initially develop nasal and ocular symptoms but severe asthma exacerbations are not uncommon. The allergens are very volatile and sensitization may occur by direct or indirect contact [454]. The allergens are found in the mane, transpiration and urine. The major allergen of horse dander is Equ c1 [455, 456]. Cross-sensitization can sometimes be found with other equidae (pony, mule, donkey, zebra) and with cat, dog and guinea pig albumins.

Allergy to cattle (*Bos domesticus*, Bos d) has decreased due to the automation of cattle breeding and milking but it still remains present in cattle breeding areas [457-459].

### 3.4.1.5. Fungal allergens

## 3.4.1.5.1. - Molds

Superior fungus, mold and yeast are plants which do not possess chlorophyll but which liberate large quantities of allergenic spores into indoor and outdoor environments. Mold spores make up an allergen source whose importance is significantly related to an increase in the hospitalization of asthmatics [460-462]. Widespread in the air and resulting from putrefying organic matter, fungi and molds are present everywhere except in the case of low temperatures or snow, which hinders their growth. Their development is especially

increased in hot and humid conditions, which explains their seasonal peaks and abundance in certain hot and humid areas.

The mold spores are small in size  $(3-10 \ \mu m)$  and penetrate deeply into the respiratory tract. They can provoke rhinitis as well as asthma. For reasons which are unknown, children are more often sensitized to mold than adults [463].

Three important types of mold and yeast can be distinguished according to their origin [464].

- The principal atmospheric (outdoor) molds are *Cladosporium* [465, 466] and *Alternaria* [467-470] with a peak during the summer, and *Aspergillus* and *Penicillium* which do not have a defined season. Large regional differences are found [471-477].
- Domestic (indoor) molds are also very important allergens [474, 476, 478, 479]. Microscopic fungus present in homes is capable of producing spores all year round and is responsible for persistent symptoms, especially in a hot and humid interior. Indoor molds have been associated with dampness [480-483]. They can also grow in aeration and climatization ducts (central heating and air conditioning) and the water pipes. They are particularly abundant in bathrooms and kitchens. Molds also grow on plants, which are watered frequently or on animal or vegetable waste, furnishings, wallpaper, mattress dust and fluffy toys.
- Molds can be naturally present in foods (*Penicillium, Aspergillus* and *Fusarium* and more rarely, *Mucor*) and as an additive as they are used in the preparation of numerous foodstuffs. However, it is difficult to define the allergenic role of these alimentary molds.

### 3.4.1.5.2. - Yeasts

The yeasts reputed to be the most allergenic are *Candida albicans, Saccaromyces cerevisiae* and *minor* [484] and *Pityrosporum* [485]. IgE-mediated sensitization to yeasts has been shown, particularly in atopic dermatitis [485-488]. Most yeasts present cross-reactive antigens [489]. Yeast can be found in foods and in the atmosphere. *Sporobolomyces* is responsible for asthma and rhinitis [490].

#### 3.4.1.5.3. - Basidiomycetes and Ascomycetes

Their spores are found in large quantities in the atmosphere and can be allergenic in patients with asthma and rhinitis [491, 492] but their role as an atmospheric allergen is still difficult to define. However cases of occupational allergies to superior fungal spores are not rare [493].

# 3.4.1.6. Insects

The inhalation of insect waste can induce an IgE immune response and respiratory allergies. Certain allergens, such as haemoglobin or tropomyosin of diptera, have been identified [494-496].

Insect allergens can be found indoors (cockroaches [293] or Chiromides in some tropical areas like the Sudan) [497, 498] or induce sensitization after occupational exposure (e.g. experimental work with crickets) [499-501]. However, the concentration in allergens must be very high to bring about a sensitization.

Cockroach allergen is found in gastro-intestinal secretions as well as on the chitin shell. The allergen is distributed in large particles that do not become airborne. Cockroaches tend to cluster in hiding places and forage in the dark. Seeing cockroaches during the day suggests that they are in very large numbers. The allergen is usually distributed throughout an infested home [502]. Elevated concentrations have been observed in high-rise apartments, urban settings, pre-1940 constructions and households with low incomes [503-505]. Cockroaches are particularly important in low-income housing ("inner city") where they can cause severe asthma [292]. In certain hot and humid regions of the United States [506, 507] or

tropical areas such as South East Asia [508-510], allergies to cockroaches are as frequent or even more frequent than allergies to ragweed pollen or to house dust mites. However, cockroaches are also prevalent in many European countries [511-513] and even in Nordic countries [514].

#### **3.4.1.7.** Other inhalants

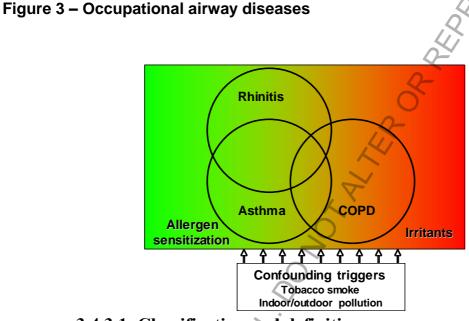
The allergenic role of **bacteria** is difficult to evaluate. At the present stage of our knowledge, it can be estimated that asthma or rhinitis brought about by a bacterial allergy is exceptional, even though specific IgE to bacteria have been found. However, the enzymes originating from bacteria and used in the industrial environment (e.g. detergents) can cause asthma or rhinitis with a high prevalence [515, 516].

*Ficus benjamina*, known as Java willow, Ceylon willow or Bali fig tree is a tropical non-flowering plant used ornamentally in many homes and public places. Inhalant allergy to *Ficus* has been reported [517] and appears to be relatively common, probably because *Ficus* allergens are cross-reactive with those of latex [518]. The allergens originally located in the sap of the plant are also present in dust collected from the leaf surfaces and in house dust on the floor where the allergen may persist for months after removal of the plant [519]. Other ornamental plants may also be potent allergens [520].

### **3.4.2. Food allergens**

Food allergy is rare in subjects with allergic rhinitis without other symptoms. On the other hand, rhinitis is a common symptom of food allergy in patients with multiple organ involvement. In infants under 6 months, the majority of allergic reactions are due to milk or soy. Over 50% of infants with cow's milk allergy suffer from rhinitis [521]. In adults, the most common food allergens causing severe reactions are peanuts [522], tree nuts, fish, crustacea, eggs, milk, soybeans, sesame, celery and some fruits like apples and peaches (for review see [523]).

Pollinosis patients often display adverse reactions upon the ingestion of plant-derived foods as a result of IgE cross-reactive epitopes shared by pollen and food allergen sources. The symptoms of such pollen-food syndromes range from local oral allergy syndrome to severe systemic anaphylaxis [524-526]. The best known association is between birch pollen and a series of fruits (including apple), vegetables and nuts [419, 527-532]. Other associations include celery-mugwort-spice [533-535], mugwort-mustard, mugwort-peach, ragweed-melon-banana [536], grass-melon [537], plantain-melon, *Parietaria*-pistachio, Russian thistle-saffron, peach-cypress [538] and Japanese cypress-tomato [539]. An association between grass pollen and peanut allergy was recently suggested [540] but needs confirmation. On the other hand, clinically insignificant cross-reactivity exists among cereal grains and grass pollens [541].


Cross-reactive antigens have been identified between latex and banana, chestnut or kiwi fruit [542, 543]. Although it is common to find positive skin tests and IgE antibodies to a range of legumes in peanut allergic patients, except for lupine [544], only a small percentage of the individuals also have clinical responses which are almost always less severe than to the peanut itself [545].

Molecular biology-based approaches have also improved our knowledge on cross-reactivity among allergens [546-548]. The identification of allergens in fruits and vegetables showed IgE cross-reactivities with the important birch pollen allergens Bet v 1 [549] and Bet v 2 (birch profilin) [550-553]. Many other cross-reactive antigens have also been identified and characterized. Dependent on the main cross-reactive allergen, different symptoms may be observed. Bet v 1 in apples, cherries, peaches and plums mainly causes mild symptoms such as the oral allergy syndrome [554]. However, Bet v 1 associated with other allergens may

cause generalized symptoms. Sensitization to Bet v 2 is more often associated with generalized symptoms, in particular urticaria and angioedema [555]. Lipid-transfer proteins are relevant pan-allergens of fruits and vegetables [556, 557].

# 3.4.3. Occupational agents

Occupational airway diseases (OAD) include asthma, rhinitis, COPD and chronic cough (Figure 33). Pneumoconiosis and fibrosis are other occupational respiratory diseases but are not included in OAD. There are many overlaps between the four diseases and it may be difficult to make a clear distinction between them. Moreover, many patients suffering from occupational and non-occupational airway diseases are exposed to many risk factors and it may not be easy to demonstrate the occupational origin of the disease.



#### 3.4.3.1. Classification and definition

Work-related rhinitis and asthma refer to at least two nosological entities [558]:

- Occupational rhinitis and/or asthma "caused" by the workplace [133, 559]. Occupational agents can then be sensitizing (inducing as an allergen), irritant or both.
- And asthma or rhinitis which worsens at work due to other causes (work-aggravated or exacerbated asthma) [84, 560-562].
- In many cases, and particularly for high-molecular weight agents, occupational rhinitis precedes asthma [133, 559]

**Work-related chronic cough** is often associated with asthma or COPD, but, as the only symptom, represents a prevalent work-related airway disease [563, 564].

**COPD** does not have a clinical subcategory that is clearly identified as occupational, largely because the condition develops slowly and several risk factors (in particular tobacco smoking) are concomitant [565]. However, some patients may have rhinitis, asthma and COPD at a varying degree due to the interaction of multiple occupational agents and co-factors such as tobacco smoke, outdoor and indoor air pollution in particular biomass fumes in developing countries.

# 3.4.3.2. Most common occupational agents inducing rhinitis and asthma

In most countries, the same occupational agents are the most common causes of asthma and rhinitis [566, Bang, 2005 #21970, 567-569]. These include: isocyanates [570], flour and grain, wood dust [135, 571, 572], glutaraldehyde and anhydrides [573],

solder/colophony [574-576], laboratory animals, insects [577], resins and glues [578], latex [137], metal salts [141] and persulfates [579, 580].

Small mammals can determine occupational sensitization in laboratory personnel (10-50% of the exposed subjects) [449, 581]. Two distinguishable syndromes have been identified [582]. The first is characterized by rhinitis with negative skin prick tests. The second consists of rhinitis leading progressively to asthma with positive prick tests. Atopy [451, 452] and active smoking [583] represent a risk for the development of laboratory animal allergy. Prick tests are useful diagnostically only in the latter. Moreover, the prevalence of allergy to laboratory animals is quite high.

Industrially used natural rubber latex is obtained from *Hevea brasiliensis* (Euphorbiaceae family). Whereas the chemical additives used in latex manufacture are a cause of delayed-type hypersensitivity (allergic contact dermatitis) [584], IgE-mediated allergy to natural rubber latex proteins (latex allergy) is a serious health issue in health-care workers [137, 585] and other occupations. Symptoms of latex allergy include contact dermatitis, rhinitis and asthma and, more occasionally, anaphylaxis [137, 586]. Skin tests and serum-specific IgE can be used for the diagnosis of latex allergy [587, 588]. If needed, provocative challenge can be carried out.

Bakers often present with rhinitis and asthma [139, 589, 590]. IgE-sensitization to bakery allergens (flour) [139, 591] or enzymes [592], or contaminants [593] seems to be the main cause of bakers' asthma and rhinitis but cannot explain nasal or bronchial symptoms in each case [594]. Occupational rhinitis, both IgE- and non-IgE-mediated, is associated with asthma symptoms [595]. Bronchial responsiveness to bakery-derived allergens is strongly dependent on specific skin sensitivity [596]. There may be interactions with tobacco smoking [597].

Many other high molecular weight allergens can induce IgE-mediated rhinitis and asthma: agricultural mites [339-342, 347, 348, 350, 351], coffee beans [598], proteolytic enzymes [515, 599, 600], other enzymes [601, 602], insect dust [577]; plants and flowers [603, 604].

Low-molecular weight agents represent at least 50% of occupational asthma agents, but the mechanisms of the reactions are still poorly understood [605-607]. Although these can act as reactive haptens, non-immunological mechanisms are common [608]. An IgE-mediated sensitization is clear for some agents, but IgG subclasses and IgG<sub>4</sub> are also increased as a consequence of the exposure, the disease or both [605]. Many occupational agents inducing rhinitis and asthma are isocyanates [570, 609], aldehydes [610], anhydrides [573], ninhydrin [611], pharmaceutical compounds [612] or others [613]. However, more than 250 different chemical entities have been identified. Some compounds like chlorine can induce irritant rhinitis in 30 to 50% of exposed workers [173, 174].

Formaldehyde is a small volatile chemical widely used in industry and as a sterilizing agent in medicine. At high concentrations, it is toxic and can induce irritative side effects, but it acts as a reactive hapten and can become allergenic usually leading either to IgE-mediated reactions or contact dermatitis. However, IgE-mediated allergic reactions appear to be related mostly to the pharmaceutical use of formaldehyde [614, 615]. In homes, schools or occupational settings, formaldehyde acts mainly as an irritant [616, 617] but not always [618, 619].

#### **3.4.3.3.** Problems specific to developing countries

For several years, miners and founders have been known to suffer from pneumoconiosis, often associated with tuberculosis and tobacco smoking [620-623].

More recently, asthma, COPD, chronic cough and/or rhinitis induced by occupational exposure have been identified in developing countries [591, 624-638].

The same agents of occupational asthma are found in developed and developing countries [639-641], but some agents are specific to developing countries, and the levels of exposure are not usually controlled, making the diseases more prevalent and severe than in developed countries. Tobacco smoking, air pollution and possibly tuberculosis and its sequelae (not demonstrated for asthma) were found to be confounding factors.

# **3.5.** Pollutants

Up to 1970, in Europe and the USA, episodes of atmospheric winter pollution were frequently responsible for acute mortality epidemics by cardiovascular and respiratory diseases. The responsibility for such effects was given to high concentrations of sulphur dioxide (SO<sub>2</sub>) and particulate matter (PM) in the air of cities usually due to unfavorable meteorological conditions and air stagnation. There has been a significant reduction of industrial pollution in Western countries with the use of efficient filters in factory chimneys, and of combustibles such as petrol and electricity which pollute less than coal. Urban air pollution is still highly prevalent in some developing countries and in a few developed ones. Moreover, urban-type pollution is still of major concern in Western countries with an increase in automobile-induced pollution.

Throughout the world, indoor air pollution, tobacco smoking and occupational exposures are of great concern. Augmented reactivity to irritants is a phenotypic characteristic of both non-allergic and allergic rhinitis, but the role of pollution in rhinitis is still a matter of debate.

# 3.5.1. Outdoor pollutants in allergic rhinitis

### 3.5.1.1. Pollution, IgE sensitization and rhinitis prevalence

Cross-sectional epidemiologic studies have demonstrated that allergic rhinitis in general [642, 643], and pollinosis to Japanese cedar pollen in particular [644, 645], are more prevalent in subjects living in areas of heavy automobile traffic. Sensitization to pollen was found to be increased in relation to truck but not car traffic [646]. Some studies found that exposure to outdoor air pollutants may increase the risk of allergic rhinitis [647-650] whereas others did not find any relationship [651]. Outdoor pollutants were also associated with an increase in rhinitis of undefined origin [652-655]. However, many studies showing effects of air pollution on health rely on self-reported exposure, which may be inaccurate [656, 657], and the results of these studies are inconsistent. However, they warrant further attention.

Fossil fuel combustion products may act as adjuvants in the immune system and may lead to an enhancement of allergic inflammation [658]. Through this mechanism, diesel exhaust may be a contributor to the increased prevalence and morbidity of asthma and allergic rhinitis. Diesel exhaust particles were shown to skew the immune response towards IgE production [659] and augment allergic inflammation [660-662]. Nasal challenge with diesel exhaust particles induces alterations in cytokine responses and an increase in IgE production [663]. Diesel exhaust particles can induce allergic diseases with an increased IgE production and a preferential activation of Th2 cells [664-666]. They may also act as an adjuvant of pollen allergens [667]. Metabolic and cellular activation pathways were linked to chemicals such as polycyclic aromatic hydrocarbons contained in diesel exhaust particulates [668].

### **3.5.1.2.** Automobile pollution and nasal symptoms

The principal atmospheric pollutants emitted by automobiles can be classified as follows:

<u>*1*- oxidant pollutants</u> which are chemically evolving in the troposphere due to the sun rays:

- **carbon monoxide (CO)**, a result of incomplete coal combustion, but with no apparent involvement in rhinitis.
- **nitric oxides (NO**<sub>x</sub>) and especially NO and NO<sub>2</sub>, a result of nitrogen oxidation in the air at high temperatures. In Swiss pre-school children, symptoms of irritation of the upper respiratory tract were increased in the zones of high NO<sub>2</sub> concentrations [669].
- volatile organic compounds (VOC) including hydrocarbons and some oxygen composites. The formed secondary pollutants are, above all, ozone [670] but there are also other species of oxidants (peroxyacetylnitrates, aldehydes, nitric acid, oxygen peroxide, etc). The production of ozone is maximal in steep-sided or very sunny geographical sites such as Southern California [671], Switzerland, Austria, Germany, the South of France and around large cities. The ozone peaks occur from April to September in the Northern Hemisphere. Nearly 40% of the inhaled ozone is absorbed by the nasal mucosa. Ozone challenge results in nasal inflammation and congestion [672-675]. It increases the late-phase response to nasal allergen challenge [676]. Long-term ozone exposure in children [677] showed acute inflammation of the nasal mucosa after the first ozone peak and possible adaptation of the mucosa during the summer season. Chronic exposure to high levels of ozone was not found to induce nasal symptoms in children but increased bronchial hyperreactivity [678].

<u>2-</u> sulphur pollutants, such as  $SO_2$  formed from diesel sulphur. High levels of  $SO_2$  sign acidparticulate pollution of industrial origin in relation to the combustion of coal and fuels which are rich in sulphur. Exposure to  $SO_2$  decreases the secretion of nasal mucus and increases the resistance of the nasal airways [679, 680].

<u>3- organic chemical agents</u> which include polyaromatic hydrocarbons, such as benzo(a)pyrene, benzo(k)fluoranthene, benzo(b)fluoranthene, benzo(g,h,i)pirylene, and benzo(a)anthracene. Even though formaldehyde and VOC are mainly indoor pollutants, they are detectable in some cities, such as Los Angeles, at concentrations able to induce irritating symptoms of the upper respiratory tract [681].

<u>4- carbon dioxide</u> ( $CO_2$ ) produced by the oxidation of the carbon of the fuels.

<u>5- metals</u> (notably lead), present initially in oils and fuels.

<u>6- particles</u> (PM) which are produced mainly by the incomplete combustion of the fuels and lubricants. They can be classified according to their diameter : PM 10 (less than  $10\mu$ m), PM 2.5 (less than  $2.5\mu$ m) and nanoparticles (less than  $1\mu$ m). The finer the particles, the deeper they penetrate into the respiratory tract and the more capable they are of passing through the air-blood barrier [682]. Some studies have found that subjects exposed to PM10 had more upper respiratory symptoms than those exposed to lower levels [683, 684]. PM2.5 can induce nasal eosinophilia [685].

In developing countries, automobile pollution in large cities is becoming a major problem because of the increased traffic and the level of maintenance of vehicles which emit very large levels of pollutants.

# 3.5.1.3. Acute effects of outdoor air pollution

Acute effects due to outdoor exposure to several gases/fumes and particulate matter have not been sufficiently studied on nasal symptoms. The few available studies inconsistently suggest an increase in rhinitis symptoms or consultations for allergic rhinitis during peaks of pollution [686-688]. Pollution and meteorological factors are closely related to complaints of non-allergic, non-infectious perennial rhinitis patients [689].

### **3.5.1.4.** Chronic effects of outdoor air pollution

The chronic effects of atmospheric pollutants have been studied, but, except for the known effects of PM on lower airways, no definite conclusion can be drawn [690].

Pollution is an important cause of nasal symptoms in non-allergic subjects as demonstrated in Mexico City [177, 691, 692].

In one study, patients living in congested areas due to automobile traffic had more severe symptoms of rhinitis and conjunctivitis that those living in uncongested areas [693]. Outdoor pollution appears to induce symptoms in patients with allergic rhinitis [174, 651, 694].

# **3.5.2. Indoor air pollution**

### **3.5.2.1.** Developed countries

Indoor air pollution is of great importance since subjects in industrialized countries spend over 80% of their time indoors. It includes domestic allergens and indoor gas pollutants [695-698], among which tobacco smoke is the major source [699].

Other pollutants may have a role, especially when a fuel or wood-burning stove is present in the house [700-702] with the emission of carbon oxides, nitric oxides, PM, VOC and SO<sub>2</sub>. In some studies, household wood or coal stove use was negatively associated with atopic sensitization and allergic rhinitis in childhood [703] but this was mainly confounded by childhood residential environments, especially the farm environment [704].

Gas cooking may also be involved in respiratory symptoms [705], especially in women and atopic subjects [706].

Certain furniture can also liberate compounds utilized during the manufacturing process (plywood, glue, fabric, giving off formaldehydes and isocyanates) [617]. However, in these studies, nasal symptoms were not usually examined. An association between asthma and allergic symptoms and phthalates in house dust has been found in children [707].

## 3.5.2.2. Developing countries

Biomass fuels represent a major danger in developing countries. However, over two billion people, almost all in developing countries, rely on coal and biomass in the form of wood, dung and crop residues for domestic energy [708, 709]. These materials are typically burnt in simple stoves with a very incomplete combustion. Consequently, women and young children are exposed to high levels of indoor air pollution every day resulting in an estimated 1.5-2.0 million premature deaths a year and a high prevalence of COPD [698, 710]. Little information is available for allergic rhinitis. However, in Ethiopia, an increased risk of allergy was associated with the use of biomass fuel and particularly kerosene in the home [711].

### 3.5.3. Tobacco smoke

# 3.5.3.1. IgE sensitization

Many patients with allergic rhinitis smoke. Smoking inconstantly increases total and specific IgE [712-716] and the IgE sensitization to some occupational allergens [717-719]. However, in the absence of longitudinal studies, it is difficult to establish whether smoking is a causative factor of allergy or not [714, 720].

Pre-natal [252, 721] and early post-natal exposure to tobacco smoke enhances allergic sensitization in some groups of subjects such as boys [722] during the first three years of life.

Few studies have examined the relationship between tobacco smoking and the prevalence of rhinitis [55, 715, 723-729]. In three studies, the prevalence of self-reported nasal allergy symptoms was lower in smokers than in non-smokers [55, 715, 723]. In one study involving adolescents, smoking was found to increase the prevalence of rhinoconjunctivitis [729]. On the other hand, there was no effect of environmental tobacco smoke (ETS) exposure at home, neither on allergic sensitization nor allergic rhinitis [730].

#### **3.5.3.2.** Effects of tobacco smoke on nasal symptoms

In smokers, eye irritation and odor perception are more common than in non-smokers [189]. Moreover, some smokers report sensitivity to tobacco smoking including headache and nose irritation (rhinorrhea, nasal congestion, postnasal drip and sneezing) [192]. The more the subjects smoke, the more they report chronic rhinitis [731]. Objective assessments have confirmed that smoke-sensitive patients present rhinorrhea and/or nasal obstruction when challenged with tobacco smoke [732]. Tobacco smoke does not appear to be allergenic in contradistinction to tobacco leaves in exposed workers [733, 734]. Tobacco smoke can alter the mucociliary clearance [190] and can cause an eosinophilic and "allergic"-like inflammation in the nasal mucosa of non-atopic children [191]. In some rhinitis patients, tobacco smoking or passive smoking can induce a nasal reaction interfering with allergens and inducing symptoms of rhinitis [735]. However, in normal subjects, smoking does not impair nasal quality-of-life [193].

Passive smoking may be associated with nasal symptoms but studies do not always accord. In Trinidad and Tobago, smoking at home is strongly associated with symptoms of asthma and rhinitis in children of primary school age [736]. A substantial number of women experience nasal symptoms with ETS exposure [737].

It is not yet known whether tobacco smoke may affect the response to intranasal glucocorticosteroids.

## 3.5.4. Climatic change impacts allergens

Climate change impacts aeroallergens, particularly pollen [738] and molds [739]. The timing of tree pollen seasons is known to depend mostly on a non-linear balance between the winter chilling required to break dormancy and spring temperatures. A shift in the timing of birch pollen seasons was found in Europe due to warming but there are regional contrasts, the season being earlier or later [398, 740]. In Spain, it has been predicted that in 100 years oak will pollinate one month earlier than now due to climate change [741]. However, similar findings have been observed for grass pollens [742]. The duration of the pollen season is extended in some species. Moreover, plants produce a greater quantity of pollen under these changed climatic conditions [743, 744]. Stronger allergenicity is observed in pollen from trees grown at increased temperatures or in polluted areas [745-748]. Climate changes are blamed for the increase in allergic diseases [738, 749].

# 3.6. Social class

Socioeconomic differences in allergic disease prevalence have been reported; asthma and particularly severe asthma have been associated with poverty in the United States [750] and hay fever and eczema with relative affluence in developed [721, 751, 752] and developing countries [753]. In the inner city of the US, low social class was univariately associated with increases in total IgE, the number of allergen sensitizations and levels of specific IgE [504]. It is not yet established as to what degree such differences in disease prevalence reflect patterns of sensitization and specific allergen sensitivities. Moreover, in longitudinal studies it has been found that the role of social class has changed over time. The steepest increase in asthma and allergic rhinitis occurred in conscripts with a low socio-economic status [752].

In Nottingham, in a study of 2,114 individuals, those with perennial symptoms were no more likely to have been working in a dusty or smoky environment [754].

# 4. Mechanisms

# 4.1. Allergic inflammation

Allergic rhinitis is classically considered to result from an IgE-mediated allergy associated with nasal inflammation of variable intensity [755]. Cells, mediators, cytokines, chemokines, neuropeptides, as well as adhesion molecules and cells co-operate in a complex network provoking the specific symptoms and non-specific nasal hyperreactivity. The understanding of the mechanisms of disease generation provides a framework for rational therapy in this disorder, based on the complex inflammatory reaction rather than on the symptoms alone.

## 4.1.1. IgE-dependent mechanisms

Allergy is generally caused by a sustained overproduction of Immunoglobulin E (IgE) in response to common environmental antigens such as indoor and outdoor allergens, foods and other allergens [756]. IgE itself constitutes a very minute fraction of the total antibody in the human serum (50-300 ng/ml of IgE versus 10 mg/ml of IgG). However, the biological activities of IgE are powerfully enhanced by the activities of specific cell surface receptors to which it binds, which may be of the high or low affinity phenotype.

IgE production results from complex interactions between B-cells, T-cells, mast cells and basophils, involving the presence of the cytokines IL-4, IL-13 and IL-18, as well as a physical interaction between T- and B-cells by a number of surface and adhesion molecules [757]. Th2-cells [758] and a down regulation of T-regulatory cells-1 (Treg-1) responses [759, 760] drive synthesis of IgE and the recruitment, maturation, survival and effector function of accessory cells such as eosinophils, basophils and mast cells.

Local IgE production has been a contentious concept for over 40 years. For a long time, IgE-producing B-cells were observed in local lymphoid tissue. However, it has been shown that IgE are produced in the local lymphoid tissues and locally in both the nasal and bronchial mucosa [761, 762]. There is a persistent IgE synthesis in the nasal mucosa during and just after the pollen season [763]. Allergen drives class switching to IgE in the nasal mucosa in allergic rhinitis [764].

Allergen-specific IgE, synthesized in response to allergens in the environment, becomes fixed to FccRI on the membranes of mast cells and basophils. Mast cell accumulation in the airway mucosa is an important pathophysiological event in allergic rhinitis and asthma, as inhaled allergens impact the mucosal surfaces of the nose and/or lungs. The aggregation of receptor-bound IgE molecules on exposure to specific allergen results in the production of mediators (histamine, leukotrienes and others) that produce the allergic response [765]. The immediate response depends on the structure of the target organ: typically, itching, sneezing, rhinorrhoea and blockage in the nose, with bronchoconstriction and wheeze due to smooth muscle contraction in the lungs [766]. Late-phase allergic reactions and chronic inflammatory changes in the asthmatic lung involve many cell types including T-cells, mast cells and eosinophils [767]. The links between an IgE-mediated reaction and rhinitis or asthma have been confirmed by the effect of an anti-IgE monoclonal antibody in these diseases [768-771].

# 4.1.2. Non-IgE-dependent mechanisms

However, it is now also appreciated that allergens, on account of their enzymatic proteolytic activity, may directly activate epithelial cells [318, 772, 773] and eventually lead to a Th2-immune response, inducing cytokine and chemokine release [774] and thus have the

potential to induce airway inflammation independent of IgE [775]. Moreover, Der p 1 is able to alter the epithelial tight junctions [316] thereby increasing epithelial permeability [776]. The relative importance of non-IgE to IgE-mediated mechanisms is undetermined.

### 4.1.3. Inflammation of the nasal mucosa in allergic rhinitis

Pollen-induced rhinitis is the most characteristic IgE-mediated allergic disease and is triggered by the interaction of mediators released by cells which are implicated in both allergic inflammation and non-specific hyperreactivity [777]. This disease can be mimicked by nasal challenge with pollen allergens [778] but such a challenge differs from the natural course of the disease in that it is a single provocation and does not reflect the multiple triggers which occur during the pollen season. It does not take into account the priming effect on the nasal mucosa which appears to play an important role in allergic rhinitis [72, 779].

Studies of cells infiltrating the nasal mucosa during the pollen season show that there is an increase in the numbers of various inflammatory cells and that this is correlated with both the severity of symptoms [777, 780-782] and nasal non-specific hyperreactivity [783, 784]. Eosinophils are almost always found in the mucosa between non-desquamated epithelial cells, in the submucosa and in nasal secretions [780, 785]. Mast cells are present in increased numbers in the epithelium and the submucosa but they are often degranulated [785-788]. CD4<sup>+</sup> T-cells are increased in number during the pollen season [789]. Moreover, in allergic patients there is an increase in Langerhans-like cells (CD1<sup>+</sup>) during the season [790].

In patients with indoor allergy, nasal eosinophilia is not a permanent feature [78, 199, 791-793]. Mast cells are not always increased in the mucosa.

The concept of "minimal persistent inflammation" is important [64, 78, 79]. In patients with allergic rhinitis, the allergen exposure varies within the year and there are periods in which there is little exposure. This is the case in the Mediterranean area for house dust mites during the summer, or when allergen avoidance is effective. However, these patients, even though they are symptom free, still present inflammation of the nose.

Allergic rhinitis is characterized by an inflammatory infiltrate and the release of mediators responsible for the symptoms. Moreover, neurogenic mechanisms including a nasonasal reflex play a role which is still not fully appreciated.

# 4.1.4. Inflammatory cells

The inflammatory infiltrate is made of different cells.

Mast cells are not only effector cells of the immediate-phase response, but also play a role in on-going allergic inflammation [795].

Eosinophils may differentiate from progenitors in the nasal mucosa during the pollen season [796]. They are increased in numbers and activated in the nasal mucosa of symptomatic allergic patients [797].

T-cells, macrophages, fibroblasts and other cells participate in the inflammatory infiltrate of the nasal mucosa of patients with allergic rhinitis.

This cellular response includes:

- Chemotaxis, selective recruitment and trans-endothelial migration of cells in particular by CC3 chemokines [798].
- Localization of cells within the different compartments of the nasal mucosa. Mast cells are not only the effector cells of immediate phase allergic reaction,
- Activation and differentiation of various cell types.
- As well as a prolongation of their survival.
- Release of mediators by these activated cells.
- Regulation of the local and systemic IgE-synthesis.
- Communication with the immune system and the bone marrow.

### 4.1.5. Mediators

A range of mediators are released in nasal secretions during the pollen season [799]. These include Cys-LT [800, 801], ECP [802] and, inconstantly, histamine.

Histamine was discovered just after the turn of the century and rapidly became known as the mediator of allergic and anaphylactic reactions. In the late 1930s, it appeared that other chemical mediators such as the slow-reacting substances of anaphylaxis (SRS-A, now identified as Cys-LT) were involved in the allergic reaction. The mechanisms of the allergic reaction are now becoming better understood and although histamine (released by mast cells and basophils) is still one of the major effectors of the allergic reaction, many other mediators produced by different cell types are involved. Thus, mediators, cytokines, chemokines, neuropeptides, adhesion molecules and cells co-operate in a complex network provoking the specific symptoms and the non-specific hyperreactivity of allergic rhinitis.

Cysteinyl leukotrienes (CysLTs) are a family of inflammatory lipid mediators synthesized from arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils and macrophages which play a role as multi-functional mediators in allergic rhinitis [803]. Besides their vasoactive properties, CysLT play roles in the maturation, as well as in the tissue recruitment, of inflammatory cells.

# 4.1.6. Neurogenic mediators

The nose provides defensive and homeostatic functions requiring rapid responses to physical and chemical stimuli [804]. As a result, it is armed with a complex nervous system that includes sensory, parasympathetic and sympathetic nerves. Sensory nerves transmit signals from the mucosa generating sensations such as pruritus, motor reflexes, such as sneezing and parasympathetic and sympathetic reflexes that affect the glandular and vascular nasal apparatuses [805]. Reflexes directed to the nose are also generated by inputs from other body regions. Hence all symptoms that constitute the nosologic entity of rhinitis can be triggered through neural pathways. Neural function can be chronically upregulated in the presence of mucosal inflammation. The molecular mechanisms of hyperresponsiveness are not understood, but several inflammatory products appear to be playing a role. Neurotrophins, such as the nerve growth factor [806], are prime candidates as mediators of neural hyperresponsiveness [807].

# 4.1.7. Remodeling processes

In allergic rhinitis, another chronic inflammatory disease, remodeling is still poorly understood [19, 808, 809]. Even though inflammation is similar in allergic rhinitis and asthma, the pathologie extent of nasal remodeling as well as its clinical consequences may be different from those of bronchi.

Epithelial damage is only minimal in the nasal mucosa of patients with allergic rhinitis [810-812]. Moreover, epithelial cell metaplasia has been observed in the nasal biopsies of some patients suffering from perennial rhinitis [813, 814]. Although the nasal and bronchial mucosa are exposed to the same noxious environment (and even more so the nose), epithelial shedding is more pronounced in the bronchi than in the nose of the same patients suffering from asthma and rhinitis [19, 815].

The reticular basement membrane does not appear to be largely pseudo-thickened [815] although some collagen and fibrous protein deposition can be found on the reticular layer [816, 817]. Moreover, the demonstration of fibrogenic growth factors in the nasal mucosa of patients with allergic rhinitis is unclear due to the paucity of studies [818] [819].

Matrix metalloproteinases (MMPs) are major proteolytic enzymes that are involved in ECM turnover [820] but their role in allergic rhinitis is not fully understood [821, 822].

The stereological estimation of blood vessel surface and volume densities was studied in human normal and rhinitic nasal mucosa [823]. The volume and surface densities of the cavernous blood vessels in rhinitis were unaltered and there was no evidence of vascular remodeling. On the other hand, the hypervascularity and overexpression of the plateletderived endothelial cell growth factor (PD-ECGF) and VEGF, an angiogenic factor, were found in allergic nasal mucosa [824, 825].

The epithelial-mesenchymal trophic unit [826] is of cardinal importance in asthma but this concept has reduced the importance of the smooth muscle as an inflammatory and regulatory cell [827]. It is however possible that some of the differences in remodeling between the nasal and the bronchial mucosa are related to the smooth muscle cells interacting with the epithelium and other mesenchymal cells [827-829]

Many of the genes involved in IgE synthesis and airways (re)modeling might be conserved fetal genes [830] which may not be silenced during early infancy. Their gene products might play an important role in the induction and maintenance of the pathogenesis of asthma [831]. Since the nose and bronchi have a different embryologic origin, it might be proposed that the persistence of fetal genes is involved in the differences observed between the remodeling of the nose and the bronchi [19].

# 4.2. Nasal hyperreactivity and non-specific triggers

Non-specific nasal hyperreactivity is an important feature of allergic and non-allergic rhinitis [832] and can be defined as an increased nasal response to a normal stimulus resulting in sneezing, nasal congestion and secretion, either a single symptom or in various combinations.

This phenomenon can be observed after nasal stimulation [833] such as:

- Heating of the nasal mucosa [834].
- Challenge of the nose with cold air which can induce an inflammatory response with the activation of mast cells [835, 836] and the occurrence of a late-phase reaction [837].
- Challenge of the nose with histamine [156, 838] or methacholine [839].
- Acrolein [840].
- Capsaicin [841].
- Strong odors [842].
- Distilled water [843].
- Change of posture [844].
- Change of body temperature [833].
- Consuming hot drinks (soup) [845].

# 5. Burden

## Burden of allergic rhinitis

- Allergic rhinitis is a global health problem that causes major illness and disability worldwide
- Patients from all countries, all ethnic groups, all socioeconomic conditions and all ages suffer from allergic rhinitis
- In many countries, the prevalence of allergic sensitization is often higher than 50% of the population in some age groups
- Using a conservative estimate, allergic rhinitis occurs in over 500 million people around the world
- Allergic rhinitis is increasing in prevalence in areas with low or medium levels of prevalence. It may be plateauing or even decreasing in high prevalence areas
- Allergic rhinitis affects social life, sleep, school and work
- The economic impact of allergic rhinitis is often underestimated because direct costs for the disease are not elevated. The indirect costs are substantial

# 5.1. Prevalence of allergic rhinitis *A*-

Despite recognition that allergic rhinitis is a global health problem and is increasing in prevalence [846-850], there are insufficient epidemiological data using allergy tests and more data are needed with regards to its etiologic risk factors and natural history. Many national or multinational studies are rapidly improving our knowledge in the prevalence of rhinitis and its possible risk factors. These include:

- The second National Health and Nutrition Examination Survey (NHANES II) [275, 285],
- The European Community Respiratory Health Survey (ECRHS) [851].
- The International Study on Asthma and Allergy in Childhood (ISAAC I) [852] and its follow up study (ISAAC III) [853].
- The Swiss Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) [854].
- The Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Air Pollution, Climate and Pollen (SCARPOL) [855].

The prevalence of an IgE sensitization to aeroallergens measured by allergen-specific IgE in serum or skin tests is over 40% to 50% in the population of Europe, the USA and Australia-New Zealand [68, 856-859]. Most but not all sensitized subjects suffer from allergic rhinitis and/or asthma.

The clinical definition of rhinitis is difficult to use in the epidemiologic settings of large populations where it is impossible to visit every person or to obtain the laboratory evidence of each immune response. It seems that there is an overestimation of allergic rhinitis using questionnaires only [854, 860] and that the attributable fraction of IgE-medited allergy in patients with a diagnosis of allergic rhinitis by questionnaires is slightly over 50% [47]. Thus, studies using questionnaires only may overestimate the true prevalence of allergic rhinitis. On the other hand, many subjects suffer from non-allergic rhinitis. Non-allergic rhinitis was reported to account for 30 to 70% of patients with chronic perennial rhinitis [82, 861].

# **5.1.1. Monocentric studies**

Most epidemiologic data concern seasonal allergic rhinitis, but not exclusively. The prevalence of seasonal allergic rhinitis using questionnaires ranges from 1% to 40% (Table 8) The prevalence of perennial rhinitis varies from 1% to 13%.

| Australia     19       Canada     19       China     20       Denmark     19 | 999 | Downs       | 10001 |       |            |                         |        | or AR                         |
|------------------------------------------------------------------------------|-----|-------------|-------|-------|------------|-------------------------|--------|-------------------------------|
| China 20<br>Denmark 19                                                       |     |             | [862] | 1282  | 7-12       | non-aborigines<br>44.2% |        | Ū,                            |
| China 20<br>Denmark 19                                                       |     |             |       | 158   | 7-12       | aborigines 31.4%        |        | 2                             |
| Denmark 19                                                                   | 02  | Lévesque    | [863] | 1520  | 9          | 9.7%                    |        | 16.98%                        |
|                                                                              |     | Yu          | [648] | 11580 | 7-15       |                         |        | 27.6%                         |
|                                                                              |     |             |       | 2621  |            |                         |        | 21.8%                         |
| Elaborat 10                                                                  | 995 | Mortz       | [864] | 1606  | 12-16      | 12.5%                   | 9.0%   | 15.7%                         |
|                                                                              | 992 | Varjonen    | [865] | 1712  | 15-16      | 14%                     | 0      |                               |
| France 19                                                                    | 991 | Harf        | [866] | 629   | adult      | 18.5%                   |        |                               |
| 19                                                                           | 992 | Vervloet    | [54]  | 2067  | 20-60      | 5.9%                    |        |                               |
| 19                                                                           |     | Pariente    | [52]  | 35615 | >18        |                         | 4.1%   |                               |
|                                                                              | 979 | Alanko      | [867] |       | 10-19      | 2.7% (rural)            | 2      |                               |
|                                                                              | 979 | Haahtela    | [868] |       | 15-17      | 22%                     | X      |                               |
| 19                                                                           | -   | Varjonen    | [865] |       | 15-16      | 14%                     | $\sum$ |                               |
| Germany 19                                                                   | 992 | Dold        | [869] | 3984  | 9-11       | 9.5%                    | )      |                               |
| 19                                                                           |     | Weiland     | [694] | 2050  | 13-16      | 22.5%                   |        |                               |
|                                                                              | 996 | Droste      | [55]  | 2167  | 20-70      | 6.6%                    | 12.7%  | 29.5%                         |
|                                                                              | 998 | Kivity      | [277] | 658   | 8-17       |                         |        | arabs : 9.7%                  |
| Italy 19                                                                     |     | Matricardi  | [870] | 1649  | men        | 13.3%                   |        |                               |
| 19                                                                           |     | Astarita    | [871] | 1998  | 9-15       | 13.1%                   |        |                               |
|                                                                              | 990 | Ogino       | [872] | 471   | 18-22      | 32.7%                   |        |                               |
|                                                                              | 994 | Okuma       | [873] | 1013  | 6-15       | 12.9%                   |        |                               |
| 19                                                                           | 92  | Okano       | [874] | 431   | school     | $\bigcirc$              |        | 22.5%                         |
| 19                                                                           | 995 | Sakurai     | [848] | 2307  | M: 19-65 🔌 |                         |        | 34.5%                         |
| 19                                                                           | 996 | Suguru      | [875] | 15234 | 6-9        | 1                       |        | 15%                           |
| Korea 19                                                                     | 97  | Min         | [876] | 9069  | All        | 4                       | 1.14%  |                               |
| Norway 19                                                                    | 90  | Bakke       | [877] | 4492  | 15-70      | 10.0%                   |        |                               |
| 19                                                                           |     | Dotterud    | [878] | 551   | 7-12       | 20.6%                   |        |                               |
| Poland 19                                                                    |     | Breborowski | [879] | 001   | 6-15       | 16.7%                   |        |                               |
|                                                                              | 994 | Dotterud    | [880] | 1684  | 8-17       | 10.170                  |        | 13.9%                         |
|                                                                              | 998 | Hannaford   | [881] | 7244  | >14        | 18.2%                   |        | 10.070                        |
|                                                                              | 994 | Ng          | [882] | 2868  | 20-74      | 4.5%                    |        |                               |
| 19                                                                           |     | Goh         | [883] | 6238  | 6-7        | H.070                   |        | 13.4%                         |
| 20                                                                           |     | Wang        | [48]  | 4602  | 6-80       |                         |        | Persistent<br>rhinitis: 13.1% |
| Spain 19                                                                     | 999 | Azpiri      | [884] | 2216  | 10-40      | 10.6%                   |        |                               |
|                                                                              | 90  | Hattewig    | [885] | 1654  | 7          |                         | 8%     |                               |
| 19                                                                           | 92  | Brattmo     | [725] | 511   | 18         |                         |        | 39%                           |
| 19                                                                           | 97  | Olsson      | [727] | 10670 | 19-80      | 24%                     |        |                               |
| 19                                                                           | 987 | Norrman     | [886] | 1112  | 13-18      | 17%                     |        |                               |
| 19                                                                           | 995 | Aberg       | [887] | 2481  | 7          | 13%                     |        |                               |
| Switzerland 19                                                               | 926 | Rehsteiner  | [888] |       |            |                         | 0.28%  |                               |
| 19                                                                           |     | Varonier    | [888] | 4781  | 5-6        | 0.5%                    | 0.6%   |                               |
| 19                                                                           | 995 | Wuttrich    | [854] | 8357  | 16-60      | 14.2%                   |        |                               |
| Taiwan 20                                                                    | 003 | Chen        | [294] | 1472  | 6-8        |                         |        | 39.8%                         |
| Thailand 19                                                                  | 994 | Bunnag      | [889] | 3124  | 11->50     |                         |        | 13.15%                        |
| Turkey 19                                                                    | 97  | Kalyoncu    | [890] | 738   | 6-13       |                         |        | 18.7%                         |
|                                                                              | 97  | Ozdemir     | [891] | 1603  | students   |                         |        | 9.7%*                         |
|                                                                              | 06  | Unlu        | [892] | 1366  | 13-18      |                         |        | 8.1%                          |
| 20                                                                           |     | Tomac       | [893] | 1500  | 6-9        |                         |        | 37.7%                         |
|                                                                              | 02  | Dinmezel    | [894] | 995   | 10.00      | 100/                    |        | 27.7%                         |
|                                                                              | 989 | Howarth     | [895] | 1792  | 16-20      | 18%                     |        |                               |
|                                                                              | 989 | Burr        | [896] | 965   | 12         | 14.9%                   | 42.0%  | 0.49/                         |
|                                                                              | 86  | Sibbald     | [33]  | 2969  | 16-65      | 3%                      | 13.2%  | 24%                           |
|                                                                              | 992 | Ninan       | [897] | 1989  | 8-13       | 11.9%                   |        |                               |
|                                                                              | 992 | Richards    | [46]  | 813   | 5-59       | 29%                     |        |                               |
|                                                                              | 995 | Strachan    | [898] | 12355 | 23         | 16.5%                   | 0.0%   |                               |
| 19                                                                           | 998 | Jones       | [899] | 2114  | >14        | 18.9%                   | 8.6%   |                               |

# Table 8 – Cumulative prevalence of allergic rhinitis in monocentricepidemiologic surveys

|     | 1999 | Arshad     | [860] | 1456  | 10    |       |      | 22.6% |
|-----|------|------------|-------|-------|-------|-------|------|-------|
| USA | 1969 | Hagy       | [900] | 1836  | 16-21 | 21.1% | 5.2% |       |
|     | 1974 | Broder     | [901] | 9226  | 4-7   | 10.2% |      |       |
|     | 1988 | Turkeltaub | [275] | 12742 |       |       |      | 20.4% |
|     | 1994 | Wright     | [721] | 747   | 9     | 42%   |      |       |

N: number of subjects

NS : nasal smears

\* : only 28% of rhinitis patients had positive skin prick tests

In a survey, skin prick testing with 8 non-standardized extracts of inhalant allergens confirmed that perennial rhinitis was often associated with allergy as there was an excess of skin prick test positivity to cat or dog among individuals suffering from perennial rhinitis [275, 285].

In the Tucson study, it was found that 42% of children had physician-diagnosed rhinitis at 6 years of age [721].

The prevalence of seasonal allergic rhinitis is higher in children and adolescents than in adults. Perennial rhinitis is more common in adults than in children but few reliable data exist [861].

In many parts of the world, pollen allergy is very common, but in Eastern Asia, Latin America and tropical areas, mite allergy is more common.

In more recent studies, the prevalence of allergic rhinitis has increased, in particular in countries with a low prevalence [636, 902-909].

# 5.1.2. Studies using the ARIA definition

In a study on the general population in Europe, the prevalence of allergic rhinitis was found to be around 25% [62, 63]. The prevalence of confirmable allergic rhinitis in adults in Europe ranged from 17% (Italy) to 28.5% (Belgium) (Table 9).

## Table 9 – Prevalence of allergic rhinitis in the general population

From [62, 63]

|         | Age (yrs) | Prevalence of     | S          | elf-reported        | Ту         | /pe          |
|---------|-----------|-------------------|------------|---------------------|------------|--------------|
|         |           | allergic rhinitis | Self aware | Physician diagnosed | Persistent | Intermittent |
| Belgium | 39.0      | 28.5%             | 65.3%      | 52.5%               | 24.8%      | 72.0%        |
| France  | 38.8      | 24.5%             | 60.6%      | 45.7%               | 28.7%      | 55.4%        |
| Gemany  | 38.0      | 20.6%             | 83.0%      | 66.0%               | 41.7%      | 19.2%        |
| Italy   | 41.5      | 16.9% 🔨           | 83.8%      | 70.3%               | 32.4%      | 35.1%        |
| Spain   | 31.3      | 21.5%             | 64.0%      | 52.0%               | 21.0%      | 48.5%        |
| UK      | 42.7      | 26.0%             | 80.8%      | 57.7%               | 53.8%      | 57.7%        |

# 5.1.3. SAPALDIA

SAPALDIA, a cross-sectional study of 9,651 adults carried out in 1991-1993, studied the prevalence of bronchial asthma, chronic bronchitis and allergic conditions in the adult population of Switzerland and examined the risk factors for these diseases, particularly air pollution [910-912] and allergy.

On the basis of a positive Phadiatop<sup>®</sup> and/or a positive skin prick test to common aeroallergens, 32.3% of the study population was considered atopic (males 35.7%, females 28.8%). The highest rate of positive skin prick tests was observed for grass pollen (12.7%), followed by house dust mite (8.9%), birch (7.9%), cat (3.8%) and dog (2.8%) [56, 854].

The prevalence of allergic rhinitis (rhinitis symptoms associated with atopy) was 13.5% (males 14.3%, females 12.6%).

The prevalence of current seasonal allergic rhinitis varied between 9.1% (questionnaire answer and a positive skin prick test to at least one pollen), 11.2% (questionnaire answer and presence of atopy) and 14.2% (questionnaire answer only).

### 5.1.4. SCARPOL

The impact of long-term exposure to air pollution on respiratory and allergic symptoms and illnesses was assessed in a cross-sectional study of school children (aged from 6 to 15 yr, N = 4,470) in Switzerland [284, 913]. Sensitization to any allergen was most strongly associated with reported seasonal allergic rhinitis (OR = 5.7), nose problems accompanied by itchy-watery eyes (OR = 4.4), symptoms occurring only during the pollen season (March through September) (OR = 4.9) and a combination of these latter two symptoms (OR = 5.8). Finally, the under-diagnosis of allergic rhinitis was found to be common. Children growing up on a farm were less likely to be sensitized to common aerollergens and to suffer from allergic diseases than children living in the same villages but in non-farming families [855].

### **5.1.5. ISAAC**

The ISAAC was founded to maximize the value of epidemiologic research into asthma and allergic disease, by establishing a standardized methodology and facilitating international collaboration. Its specific aims are [914]:

- To describe the prevalence and severity of asthma, rhinitis and eczema in children living in different centers, and to make comparisons within and between countries.
- To obtain baseline measures for the assessment of future trends in the prevalence and severity of these diseases.
- To provide a framework for further etiologic research into genetic, lifestyle, environmental and medical care factors affecting these diseases.

The ISAAC design comprises three phases [915]:

- Phase I used core questionnaires designed to assess the prevalence and severity of asthma and allergic disease for two age groups. It was completed in 156 collaborating centres in 56 countries: 463,801 children in the 13-14 year age group and 257,800 children in the 6-7 year age group. One of the problems raised with this study was that only a questionnaire was used and that responses for rhinitis may overestimate the real prevalence of the disease [284]. Moreover, there was a season-of-response effect on the responses to the questions on rhinitis symptoms suggesting a recall bias relating to recent symptoms [916].
- Phase II investigated possible etiologic factors, particularly those suggested by the findings of Phase 1.
- Phase III was a repetition of Phase 1 to assess trends in prevalence [853].

ISAAC Phase I has demonstrated a large variation in the prevalence of asthma and rhinitis symptoms in children throughout the world. The prevalence of rhinitis with itchywatery eyes ("rhinoconjunctivitis") over the past year varied across centres from 0.8% to 14.9% in 6-7-year-olds and from 1.4% to 39.7% in 13-14-year-olds [697, 852, 883, 917-937]. The overall correlation between the prevalence of asthma and rhinitis in school children was significant [852, 917]. In particular it was found that countries with a very low prevalence of asthma (<5%) such as Indonesia, Albania, Romania, Georgia and Greece, also had low prevalences of rhinitis. On the other hand, the countries with a very high prevalence of asthma (>30%) such as Australia, New Zealand and the United Kingdom, had a high prevalence of rhinitis (15-20%). Other countries with a very high prevalence of rhinitis (Nigeria (>35%), Paraguay (30-35%), Malta, Argentina, Hong Kong (25-30%), Brazil (7-25% in different centers)) had asthma prevalences ranging from 10 to 25%. It is likely that environmental factors were responsible for major differences between countries.

# The results of ISAAC Phase III have been published [853] (Table 10). **Table 10 – Prevalence of asthma and rhinitis in the ISAAC phase III study**

from Asher et al [853]

|                                | Years    | Asth  | ma sym | ptoms    | Allergic | rhinocon | junctivitis | Eczem | a sympt | oms      |
|--------------------------------|----------|-------|--------|----------|----------|----------|-------------|-------|---------|----------|
|                                | between  |       |        |          |          | symptom  | ns          |       |         |          |
|                                | Phases   |       |        |          |          |          |             | K     | 1       |          |
|                                |          | Phase | Phase  | Change   | Phase    | Phase    | Change      | Phase | Phase   | Change   |
|                                |          | One   | Three  | per year | One      | Three    | per year    | One   | Three   | per year |
| 6–7 year age-group             |          |       |        |          |          |          | C           |       |         |          |
| Africa (English-<br>speaking)  |          |       |        |          |          |          | R           |       |         |          |
| Nigeria                        | 7·0      | 4·8   | 5·6    | 0.10     | 3.7      | 3.6      | -0.01       | 4.5   | 5·0     | 0.07     |
|                                |          |       |        |          |          | 4        | Y           |       |         |          |
| Asia-Pacific                   |          |       |        |          |          | 9        | -           |       |         |          |
| Hong Kong                      | 6·0      | 9·1   | 9·4    | 0.03     | 13·7     | 17.7     | 0.67        | 3.9   | 4·6     | 0·12     |
| Indonesia                      | 6·0      | 4·1   | 2.8    | -0.21    | 3.8      | 3.6      | -0.03       |       |         |          |
| Japan                          | 8·0      | 17.4  | 18·2   | 0.10     | 7·8      | 10-6     | 0.35        |       |         |          |
| Malaysia (3)                   | 6·3      | 6.5   | 5·8    | -0.12    | 4.1      | 4.8      | 0·11        | 9.5   | 12.6    | 0.49     |
| Singapore                      | 7.0      | 15·7  | 10.2   | -0.80    | 8·5      | 8·7      | 0.02        | 2.8   | 8.9     | 0.87     |
| South Korea (2)                | 5.0      | 13·3  | 5·8    | -1·45    | 9.8      | 8·7      | -0·18       | 8.8   | 11.3    | 0.52     |
| Taiwan                         | 7.0      | 9.6   | 9.8    | 0.04     | 14.6     | 24.2     | 1.37        | 3.5   | 6.7     | 0.46     |
| Thailand (2)                   | 6.0      | 8.2   | 11.9   | 0.47     | 7.3      | 10.4     | 0.30        | 11.9  | 16.7    | 0.79     |
|                                |          | -     | -      |          |          | -        |             | -     | -       |          |
| Eastern Mediterranean          |          |       |        |          |          |          |             |       |         |          |
| Iran (2)                       | 6·0      | 5.4   | 12.0   | 1-14     | 1.5      | 2.2      | 0.12        | 1.1   | 2.0     | 0.13     |
| Malta                          | 7·0      | 8.8   | 14.9   | 0.86     | 7.2      | 8.9      | 0.24        | 4.2   | 4.0     | -0.03    |
| Sultanate of Oman              | 6·0      | 7·1   | 8.4    | 0.21     | 6.2      | 7·0      | 0.13        | 4.2   | 4.2     | 0.00     |
|                                | 00       | 7 1   |        | 021      | 02       | 10       | 0 10        | 72    | 72      | 0.00     |
| Indian subcontinent            |          |       |        |          |          |          |             |       |         |          |
| India (6)                      | 7.5      | 6·2   | 6.8    | 0.06     | 3.2      | 3.9      | 0.05        | 3.0   | 2.4     | 0.00     |
|                                | 75       | 0.2   | 0.0    | 0.00     | 5.2      | 5.9      | 0.02        | 3.0   | 2'4     | 0.00     |
| Latin America                  |          | N.    |        |          |          |          |             |       |         |          |
| Brazil                         | 7·0      | 21-3  | 24.4   | 0.44     | 12·5     | 12·0     | -0.02       | 6·8   | 6·8     | 0.00     |
| Chile (3)                      | 7.0      | 18·2  | 17·9   | -0.06    | 8·2      | 12.3     | 0.56        | 10.9  | 12·9    | 0.26     |
| Costa Rica                     | 8.0      | 32·1  | 37.6   | 0.69     | 11·6     | 15·9     | 0.54        | 8·7   | 8.9     | 0.02     |
| Mexico                         | 8.0      | 8·6   | 8·4    | -0.03    | 8.6      | 7·2      | -0·17       | 4·9   | 4.0     | -0·11    |
| Panama                         | 6.0      | 23.5  | 22·7   | -0·13    | 7·1      | 11.7     | 0.77        | 7·9   | 14.4    | 1.09     |
|                                | <u>O</u> |       |        |          |          |          |             |       |         |          |
| North America                  |          |       |        |          |          |          |             |       |         |          |
| Barbados                       | 6·0      | 18·9  | 19.5   | 0.11     | 5·5      | 6·4      | 0.15        | 6·7   | 9·2     | 0.42     |
| Canada                         | 9.0      | 14.1  | 18·2   | 0.47     | 8·2      | 10.8     | 0.29        | 8·7   | 12.0    | 0.36     |
| <u> </u>                       |          |       |        |          |          |          |             |       |         |          |
| Northern and Eastern<br>Europe |          |       |        |          |          |          |             |       |         |          |
| Albania                        | 5·0      | 7.6   | 5.0    | -0.53    | 4·1      | 3.9      | -0.03       | 2.5   | 3.7     | 0.24     |
| Estonia                        | 7·0      | 9.3   | 9.6    | 0.05     | 3.5      | 4·2      | 0·11        | 9.8   | 11·5    | 0.24     |
| Georgia                        | 7.0      | 9.3   | 6·9    | -0.34    | 3.9      | 2.8      | -0·16       | 5·1   | 2.4     | -0.39    |
| Lithuania                      | 7.0      | 4·6   | 6.6    | 0.28     | 3.2      | 3.8      | 0.08        | 2.3   | 3.0     | 0.09     |

| Poland (2)                    | 7.0        | 10·9         | 13·6        | 0.38             | 7·2         | 13·0        | 0.78              | 6.3        | 11·5                | 0.77          |
|-------------------------------|------------|--------------|-------------|------------------|-------------|-------------|-------------------|------------|---------------------|---------------|
| Russia                        | 6·0        | 11.1         | 11.4        | 0.05             | 5.6         | 4.7         | -0·16             | 9·4        | 6.6                 | -0.46         |
| Sweden                        | 8.0        | 10.3         | 10.2        | -0.01            | 8.0         | 6.9         | -0.14             | 19.5       | 22.3                | 0.35          |
| Ukraine                       | 4·0        | 12.2         | 12.5        | 0.07             | 9.7         | 7·7         | -0.51             | 6.2        | <u>-</u> _ 0<br>5·3 | -0·21         |
|                               |            |              |             |                  | -           |             |                   |            |                     |               |
| Oceania                       |            |              |             |                  |             |             |                   |            |                     |               |
| Australia                     | 9.0        | 27.2         | 20.0        | -0.80            | 9.8         | 12·9        | 0.34              | 11.1       | 17.1                | 0.67          |
| New Zealand (4)               | 9.5        | 23·6         | 22·2        | -0·11            | 9.5         | 11.4        | 0·19              | 14.3       | 15·0                | 0.08          |
|                               |            |              |             |                  |             |             |                   | 2          |                     |               |
| Western Europe                |            |              |             |                  |             |             | 4                 |            |                     |               |
| Austria (2)                   | 7·0        | 7·8          | 7·4         | -0.05            | 5·1         | 6·1         | 0.15              | 5.7        | 6·1                 | 0.05          |
| Belgium                       | 7·0        | 7·3          | 7·5         | 0.02             | 4.9         | 5·8         | 0.13              | 7.7        | 11·6                | 0.56          |
| Germany                       | 5·0        | 9.6          | 12·8        | 0.65             | 5.4         | 6·9         | 0.30              | 6·7        | 7·9                 | 0.23          |
| Italy (6)                     | 8·0        | 7·5          | 7·9         | 0.07             | 5.4         | 6·5         | 0.15              | 5·8        | 10.1                | 0.53          |
| Portugal (3)                  | 7·0        | 13·2         | 12·9        | -0.02            | 8·7         | 9.3         | 0·16              | 9.6        | 9.7                 | 0.09          |
| Spain (6)                     | 7·3        | 6·2          | 9·5         | 0.44             | 5·4         | 7·9         | 0.33              | 3.4        | 5·9                 | 0.31          |
| UK                            | 5·0        | 18·4         | 20.9        | 0.50             | 9.8         | 10.1        | 0.05              | 13·0       | 16·0                | 0.60          |
|                               |            |              |             |                  |             | Q-          |                   |            |                     |               |
| 13–14 year age-group          |            |              |             |                  |             | <u></u>     |                   |            |                     |               |
| Africa (=                     |            |              |             |                  |             | ~           |                   |            |                     |               |
| Africa (English-<br>speaking) |            |              |             |                  | 2           |             |                   |            |                     |               |
| Ethiopia                      | 8·0        | 10.7         | 9·1         | -0.20            | 10.6        | 9.9         | -0.09             | 19·9       | 19.0                | -0.12         |
| Kenya (2)                     | 6·0        | 13·9         | 15·8        | 0.35             | 14-2        | 21.2        | 0.94              | 10.4       | 15·2                | 0.83          |
| Nigeria                       | 6·0        | 10.7         | 13·0        | 0.38             | 39·7        | 16·4        | -3·88             | 17.7       | 7.7                 | -1·66         |
| South Africa                  | 7·0        | 16·1         | 20.3        | 0.60             | 15·1        | 20.7        | 0.80              | 8·3        | 13·3                | 0.71          |
|                               |            |              |             | 0                |             |             |                   |            |                     |               |
| Africa (French-<br>speaking)  |            |              |             | $\mathbf{Q}^{-}$ |             |             |                   |            |                     |               |
| Algeria                       | 6·0        | 5.9          | 8·7         | 0.48             | 9.9         | 20.7        | 1.80              | 3.2        | 6.5                 | 0.56          |
| Morocco (2)                   | 6·5        | 7·8          | 10.4        | 0.00             | 13·1        | 21·6        | 1.12              | 10.7       | 21.8                | 1.72          |
| Tunisia                       | 5·0        | 8·5          | 11-9        | 0.67             | 35.8        | 23·2        | -2.52             | 8.0        | 9.4                 | 0·28          |
|                               |            |              | 5           |                  |             |             |                   |            |                     |               |
| Asia-Pacific                  |            | Y            | /           |                  |             |             |                   |            |                     |               |
| China (2)                     | 7·0        | 4.3          | 6.0         | 0.24             | 8·1         | 10.4        | 0.33              | 1.2        | 1.4                 | 0.05          |
| Hong Kong                     | 7·0        | 12:4         | 8·6         | -0.55            | 24.0        | 22.6        | -0·21             | 2.7        | 3.3                 | 0.08          |
| Indonesia                     | 6·0        | 2·1          | 5·2         | 0.52             | 5.3         | 4·8         | -0.08             | 1·2        | 2·2                 | 0·16          |
| Japan                         | 8.0        | 13.4         | 13·0        | -0.02            | 14·9        | 17·6        | 0.34              |            |                     |               |
| Malaysia (3)                  | 6.3        | 10.1         | 8·9         | -0·13            | 13·9        | 16·2        | 0.53              | 8.9        | 9.9                 | 0.19          |
| Philippines                   | 7.0        | 12·3         | 8·4         | -0.55            | 15.3        | 11·0        | <del>-</del> 0·61 | 5·2        | 7·8                 | 0.37          |
| Singapore                     | 7.0        | 9.8          | 11.4        | 0.24             | 15.1        | 16.5        | 0.20              | 7.4        | 9·2                 | 0.25          |
| South Korea (2)               | 5.0        | 7.7          | 8.7         | 0.20             | 10.2        | 11.6        | 0.28              | 3.8        | 5.7                 | 0.39          |
| Taiwan                        | 6·0        | 5·4          | 7·0         | 0.26             | 11·7        | 17·8        | 1.02              | 1.4        | 4·1                 | 0·45          |
| Thailand (2)                  | 6·0        | 13·1         | 11.6        | -0·21            | 15.5        | 21.0        | 0.84              | 8·2        | 9.6                 | 0.39          |
|                               |            |              |             |                  |             |             |                   |            |                     |               |
| Eastern Mediterranean         | 0.5        | 40.0         | 40.0        | 0.47             |             |             | 0.04              |            |                     | 0.00          |
| Iran (2)                      | 6·5<br>6·0 | 10·9<br>17·1 | 13·2<br>7·6 | 0·17<br>−1·59    | 7·5<br>12·6 | 9·8<br>10·7 | 0·31<br>-0·32     | 2·6<br>8·4 | 4·4<br>6·1          | 0·30<br>-0·38 |
| Kuwait<br>Malta               | 8·0<br>7·0 |              |             |                  |             |             |                   |            |                     |               |
| Pakistan                      | 7·0<br>6·0 | 16·0         | 14·6        | -0.50            | 29.0        | 20.9        | <b>−</b> 1·15     | 7.7        | 5·4                 | -0.33         |
| Sultanate of Oman             | 6·0        | 8·5          | 11.7        | 0.53             | 18.1        | 16.8        | -0.22             | 9.6        | 13.2                | 0.61          |
|                               |            | 8·9          | 8·4         | -0.08            | 11.4        | 15·2        | 0.63              | 4·7        | 7·1                 | 0.39          |
|                               |            |              |             |                  |             |             |                   |            |                     |               |

| Indian subcontinent     |             |              |              |               |            |            |                |             |            |                |
|-------------------------|-------------|--------------|--------------|---------------|------------|------------|----------------|-------------|------------|----------------|
| India (8)               | 7·1         | 6.7          | 6·4          | 0.02          | 6.3        | 10.0       | 0.43           | 4·3         | 3.7        | -0.03          |
|                         |             |              |              |               |            |            |                |             |            |                |
| Latin America           |             |              |              |               |            |            |                |             |            |                |
| Argentina               | 5.0         | 11·2         | 13·6         | 0.48          | 17·4       | 16·9       | -0.09          | 7·4         | 6·3        | -0.23          |
| Brazil (5)              | 7.4         | 22.7         | 19·9         | -0.42         | 16·2       | 15.8       | -0.02          | 5.3         | 4·2        | -0.08          |
| Chile (3)               | 6·7         | 10·2         | 15·5         | 0·84          | 10.7       | 22.2       | 1.12           | 9.6         | 16.1       | 0.86           |
| Costa Rica              | 8.0         | 23.7         | 27.3         | 0.46          | 14·3       | 17.7       | 0.43           | 7.2         | 6.3        | -0·11          |
| Mexico                  | 8.0         | 6·6          | 11·6         | 0.63          | 9·4        | 7·1        | -0·28          | 4.4         | 2.8        | -0.20          |
| Panama                  | 6.0         | 17·6         | 22.9         | 0.88          | 9·4        | 11.7       | 0.40           | 7·8         | 14·5       | 1.11           |
| Paraguay                | 5.0         | 19.4         | 22.9<br>20·9 | 0.31          | 34·5       | 45.1       | 2.12           | 7 0<br>10∙8 | 17.7       | 1.38           |
| Peru                    | 6.0         | 26.0         | 19.6         | -1.06         | 19.4       | 18.7       | -0.12          | 8·2         | 10.5       | 0.38           |
| Uruguay                 | 8.0         | 19·0         | 17·9         | -0·13         | 16·0       | 10.6       | -0.67          | 7.2         | 5·2        | -0.25          |
|                         |             |              |              |               |            |            |                |             |            |                |
| North America           |             |              |              |               |            | -          | $\partial^2$   |             |            |                |
|                         | 5.0         | 17 7         | 20.0         | 0.62          | 11.0       | 11.0       | 0.16           | 5.0         | 7.0        | 0.40           |
| Barbados                | 8.0         | 17.7         | 20.8         | 0.62          | 11.0       | 11.8       | 0.16           | 5·0         | 7.0        | 0.40           |
| USA                     | 0.0         | 22.9         | 22.3         | -0·07         | 13·4       | 19.1       | 0.71           | 8·5         | 8.3        | -0.03          |
| Northern and Eastern    |             |              |              |               |            | 2          |                |             |            |                |
| Europe                  |             |              |              |               |            | LI -       |                |             |            |                |
| Albania                 | 6·0         |              |              |               |            |            |                |             |            |                |
|                         | 7.0         | 2.6          | 3.4          | 0.12          | 4.0        | 5·5        | 0.24           | 0.8         | 2.0        | 0.19           |
| Estonia                 | 7·0         | 8·6          | 9.3          | 0.09          | 4.7        | 6·3        | 0.22           | 6.6         | 8·7        | 0.29           |
| Finland                 | 7·0         | 13.1         | 19.0         | 0.84          | 15·3       | 15.5       | 0.04           | 13·2        | 15.6       | 0.34           |
| Georgia                 |             | 3·6<br>8·3   | 5·1<br>10·5  | 0·21          | 4·5<br>5·3 | 4·5<br>4·5 | -0·01<br>-0·08 | 2·8<br>5·2  | 1·8<br>3·4 | -0·14<br>-0·19 |
| Latvia                  | 10.0<br>6·0 |              |              |               |            |            |                |             |            |                |
| Lithuania               |             | 8·2          | 6.7          | -0.24         | 5.6        | 4.6        | <b>−</b> 0·17  | 1.7         | 1.8        | 0.02           |
| Poland (2)              | 7.0         | 7.8          | 10.2         | 0.35          | 8.8        | 18·9       | 1.35           | 5.0         | 8.5        | 0.44           |
| Romania                 | 7.0         | 3.0          | 22.7         | 2.81          | 5·2        | 14.3       | 1.29           | 6·3         | 5·4        | -0.13          |
| Russia                  | 6·0         | 9.9          | 11.2         | 0.22          | 7·8        | 11.7       | 0.65           | 4.9         | 3.8        | -0·18          |
| Sweden                  | 8.0         | 12.6         | 9.7          | ′ −0·36       | 11.1       | 10.4       | -0.09          | 15·8        | 12·9       | -0.37          |
| Ukraine                 | 4.0         | 12·9         | 20.9         | 2·01          | 11·2       | 11·2       | -0·01          | 5.3         | 5.7        | 0·11           |
|                         |             |              | L.           |               |            |            |                |             |            |                |
| Oceania                 |             | ~            |              |               |            |            |                |             |            |                |
| New Zealand (5)         | 9.0         | 29.7         | 26.7         | -0.39         | 19·1       | 18·0       | -0·13          | 12·9        | 8.8        | -0.44          |
|                         |             | 1            |              |               |            |            |                |             |            |                |
| Western Europe          |             | $\mathbf{D}$ |              |               |            |            |                |             |            |                |
| Austria                 | 8.0         | 11.8         | 15.1         | 0·41          | 9·2        | 9.7        | 0.06           | 5.3         | 7·5        | 0.28           |
| Belgium                 | 7.0         | 12·0         | 8·3          | <b>−</b> 0·52 | 14·5       | 16·9       | 0.34           | 6.7         | 7·2        | 0.07           |
| Channel Islands (2)     | 5.5         | 35.1         | 26.5         | <b>−</b> 1·62 | 17·3       | 15·0       | <b>-</b> 0·45  | 17·0        | 11.0       | <b>−</b> 1·04  |
| Germany                 | 5.0         | 14·2         | 17.5         | 0.68          | 14.4       | 15.0       | 0.12           | 7·1         | 7.7        | 0.12           |
| Isle of Man             | 6.0         | 33.4         | 31.2         | -0.36         | 20.1       | 20.2       | 0.02           | 15.6        | 11.1       | -0.76          |
| Italy (9)               | 7.9         | 9.4          | 8∙4          | -0.22         | 14.3       | 15·5       | 0.07           | 6·2         | 7.7        | 0.16           |
| Portugal (4)            | 7.8         | 9.5          | 12.0         | 0.32          | 7·0        | 9.5        | 0.40           | 4.4         | 5·1        | 0·16           |
| Developing of local and | 0.0         | 29·1         | 26.7         | -0.30         | 19.3       | 15.5       | -0.48          | 13·6        | 8.6        | -0.62          |
| Republic of Ireland     | 8.0         | 291          | 20.          |               |            |            |                |             |            |                |
| Spain (8)               | 7.6         | 9.3          | 9·6          | 0.04          | 13·9       | 15·0       | 0.10           | 4·1         | 4·0        | -0.01          |

# 5.1.6. ECRHS

The ECRHS was planned to answer specific questions about the distribution of asthma and the health care given for asthma in the European Community [45]. Specifically, the survey was designed:

- To estimate variations in the prevalence of asthma, asthma-like symptoms and airway responsiveness.
- To estimate variations in exposures to known or suspected risk factors for asthma.
- To assess to what extent these variations explain the variations in the prevalence of the disease.
- To estimate differences in the use of medication for asthma.

No co-operative study on allergic rhinitis has been carried out among adults but the ECRHS asked in comparable representative samples about 'nasal allergy' [45].

The protocol provides specific instructions on the sampling strategy adopted by the survey teams. It also provides instructions on the use of the questionnaires, the allergy tests, lung function measurements, tests of airway responsiveness, and blood and urine collection.

Results for the prevalence of "nasal allergy" have been published in only a few studies [55, 851, 938-941]. The findings of Droste et al [55] confirmed the close relationship of skin test positivity with reported symptoms of nasal allergy in a general population. Specific IgE positivity also shows a close relationship with nasal symptoms in response to allergen exposure in a general population. Skin testing and specific IgE measurement may be considered complementary to one another in the diagnosis of allergic rhinitis.

# **5.2.** Variations in allergy prevalence

An increase in the prevalence of allergic rhinitis has been observed over the past 40 years of the last millenium [252, 721, 847, 897, 942-950]. Some studies report allergic rhinitis in OD from baseline. In a study in Australia with 50% aborigines, it was found that allergic rhinitis increased from 1982 to 1992 but not in 1997 [951]. There are some signs of reversing trends [952], but more data are needed. These studies proposed different reasons for these trends which may be related to allergen load or co-factors.

In ISAAC III [853], it was found that in the 6-7-year age group, there is a global increase in rhinitis prevalence across most countries. In the 13-14-year age group, there is also a global increase in allergic rhinitis in countries where low, medium and high prevalence rates were found during ISAAC Phase I (Table 10). On the other hand, rates are plateauing or decreasing in countries with a high prevalence rate.

# Table 11 – Variations in prevalence in allergic rhinitis in studies not included in ISAAC III

| country | author       |       | year   | age           | SAR   | nasal symptoms<br>of AR |
|---------|--------------|-------|--------|---------------|-------|-------------------------|
| Denmark | Linneberg    | [944] | 1989   | 15-41         | 22.3% |                         |
|         |              |       | 1997   | 15-41         | 31.5% |                         |
| Finland | Rimpela      | [953] | 1977-9 | 12-18         | 5%    |                         |
|         | $\mathbf{O}$ |       | 1991   | 12-18         | 14.9% |                         |
|         | Latvala      | [954] | 1966   | Military      | 0,5%  |                         |
|         | $\bigcirc$   |       | 1990   | recruits      | 5.1%  |                         |
|         |              |       | 1997   |               | 8.2%  |                         |
| Germany | Von          | [250] | 1991-2 | 9-11          |       | 2.3%                    |
| East    | Mutius       |       | 1995-6 |               |       | 5.1%                    |
| Norway  | Selnes       | [948] | 1985   | School        | 16.5% |                         |
| -       |              |       | 1995   | children      | 24.7% |                         |
|         |              |       | 2000   |               | 29.6% |                         |
| Sweden  | Aberg        | [846] | 1971   | Army recruits | 4.4%  |                         |

|             | Aberg    | [943] | 1979    | ?             | 5.45% |                                         |
|-------------|----------|-------|---------|---------------|-------|-----------------------------------------|
|             | Aberg    | [846] | 1981    | Army recruits | 8.4%  |                                         |
|             | Aberg    | [943] | 1991    | ?             | 8.1%  |                                         |
|             | Braback  | [955] | 1952-56 | Military      |       | 4.3%                                    |
|             |          |       | 1957-61 | recruits      |       | 6.0%                                    |
|             |          |       | 1962-66 |               |       | 7.9%                                    |
|             |          |       | 1967-71 |               |       | 12.2%                                   |
|             |          |       | 1972-77 |               |       | 16.1%                                   |
| Switzerland | Varonier | [888] | 1970    | 15            | 4.4%  | L'H                                     |
|             |          |       | 1980    | 15            | 4.4%  |                                         |
|             | Wuttrich | [956] | 1885    | 15-24         | 16%   |                                         |
|             | Wuttrich | [854] | 1991    | 18-60         | 14.2% | No. |
|             | Grize    | [957] | 1992    | 5-7           | 5.0%  | $\sim$                                  |
|             |          |       | 1995    |               | 5.6%  |                                         |
|             |          |       | 1998    |               | 5.4%  |                                         |
|             |          |       | 2001    |               | 4.6%  | $\sim$                                  |
| Thailand    | Bunnag   | [889] | 1975    | 6-34          |       | 23.6%                                   |
|             |          |       | 1995    |               |       | 21.9%                                   |
| Turkey      | Demir    | [947] | 1993-4  | 5-18          |       | 4.6%                                    |
|             |          |       | 2001-2  |               |       | 13.6%                                   |
| UK          | Butland  | [252] | 1974    | 16            | 12.0% | •                                       |
|             |          |       | 1986    |               | 23.3% |                                         |
|             | Upton*   | [723] | 1972-6  | 45-54         | 5.0%  |                                         |
|             |          |       | 1996    | 45-54         | 19.9% |                                         |
|             | Ninan    | [897] | 1964    | 8-13          | 3.2%  |                                         |
|             |          |       | 1989    | 8-13          | 11.9% |                                         |
|             | Burr     |       | 1973    | 12            | 9%    |                                         |
|             |          |       | 1988    | 12            | 15%   |                                         |

\*: parents and offspring

In countries where the prevalence of allergy and rhinitis is high, a reduction in increase, a plateau or a slight reduction have been observed. On the other hand, in countries with low prevalence, there is a considerable increase of allergy and rhinitis. Trends in asthma and rhinitis prevalence do not always accord.

## 5.2.1. Rural-urban differences and modification of life style

Studies in North America [285], Europe [41, 958], Central America [959] and South Africa [960] have shown that the prevalence of atopy and allergic rhinitis is higher in urban than in rural areas [961]. This is particularly the case for pollinosis whereas pollen counts are usually higher in urban than in rural areas. Selection bias may act in selecting people who can live in the countryside [285, 854, 962-964], but confounding factors are likely to exist.

The children of farmers have less allergic rhinitis than other children, suggesting that countryside lifestyle could possibly protect children from the development of allergy [855, 965-969]. Most consistently, the "protective" farm effect was related to livestock farming and thus to microbial exposure [753]. A dose-dependent inverse relationship between exposure to endotoxin in the mattress dust of children and the occurrence of atopic diseases was shown in rural environments in Europe [970, 971]. Muramic acid, a constituent of peptidoglycan, is present in gram-negative and gram-positive bacteria in the environment, but is not an additional marker of microbial exposure [972]. Another possible protective mechanism is the ingestion of non-pasteurized milk in infancy [973].

In 1989, in East German children, there was a reduced prevalence of atopy and seasonal allergic rhinitis by comparison to West German children [958, 974]. Similar trends have been observed in the Baltic States and Scandinavia [975] or between Finland and Russia [976]. Although there is some controversy [977, 978], it seems that the prevalence rate of atopy and seasonal allergic rhinitis is now similar in all parts of Germany [250]. However, in some former Eastern European countries such as Estonia, the prevalence of allergy does not appear to increase due to change in life style [965, 979].

Asthma and allergic diseases in developing countries are associated with the adoption of an urbanized "western" lifestyle [980-986]. However, in rural areas, the prevalence of sensitization to aero-allergens such as house dust mites determined by specific IgE is common but skin tests to these allergens are usually negative [987]. Some studies suggest that, in tropical areas where parasites are endemic, the relationship between asthma and IgE is different from that of areas without major parasitic disease [987-990]. Many non-exclusive reasons may explain that IgE-mediated hypersensitivity reactions are rare in patients with chronic helminth infections, even though basophils and mast cells in these patients are sensitized with antiparasite IgE and exposed to large amounts of parasite antigens. These include the production of  $IgG_4$  "blocking antibodies" in the serum of the infected individual [991-994] and Th2-responses without atopy with elevations of anti-inflammatory cytokines, such as IL-10, that occur during long-term helminth infections and are inversely correlated with allergy [995-997]. High degrees of parasite infection may prevent asthma symptoms in atopic individuals [998] and the long-term treatment of parasitic patients with anti-parasitic drugs increases skin test reactivity to inhalant allergens [999].

# 5.2.2. Infections in the neonatal period and the hygiene hypothesis

Several studies have found an inverse relationship between atopy, seasonal allergic rhinitis (and asthma) and sib-ship size and order [252, 1000-1002]. Seasonal allergic rhinitis is less frequent in large families even after taking the month of birth into account [42].

Strachan first proposed that infections and unhygienic contact might confer protection against the development of allergy [1000]: the so-called hygiene hypothesis which may operate in allergic and auto-immune diseases [1003]. Three major hypotheses have developed and explored the role of overt viral and bacterial infections, the significance of environmental exposure to microbial compounds and the effect of both on underlying responses of the innate and adaptive immunity. To date, a truly unifying concept has not yet emerged [1004] and there are some concerns about this hypothesis [1005].

An inverse association between tuberculin responses and atopy was observed in Japanese children [1006], indicating that BCG immunization, subclinical exposure to *Mycobacterium tuberculosis* without clinical disease, or host characteristics may influence the T-helper (Th) lymphocyte balance with decreased atopy as a result. However, no relationship between tuberculin reactivity and atopy in BCG vaccinated young adults was found in developed [1007, 1008] and developing countries [1009, 1010]. In developed countries, many studies found an absence of any relationship between BCG vaccination and atopic diseases in children [1011-1017] and young adults [1008]. In other developing countries, there was a weak protective effect of BCG vaccination against asthma and hay fever [1018-1020]. In developing countries, an early BCG vaccination was associated with a weak prevention of atopic diseases [1009]. A *Mycobacterium tuberculosis* infection may protect against allergy in a tuberculosis endemic area [1021, 1022].

Childhood immunization against infectious diseases (diphtheria-tetanus-pertussis (DTP)) or measles-mumps-rubella (MMR) may protect from the development of atopic disease or inversely may increase it [1023], but the relationships are complex and no definite conclusion can be raised [1024]. However, the benefit of vaccination is such that the potential and unproven risk of increased allergic disorders should not be considered.

Infectious diseases such as hepatitis or salmonellosis can be inversely associated with allergy [870, 1025, 1026].

Priming of the immune responses against allergens takes place *in utero*. In addition, early-life events are essential in shaping the immune answer towards the Th1- or Th2-profile, associated with a non-allergic or allergic phenotype, respectively. The hygiene hypothesis suggests that an early-life environment primes the immune system in the Th1 direction (non-

allergic) while a "sterile" environment tends to promote the development of allergy. The current view of cellular and molecular mechanisms underlying these phenomena includes fine balancing between innate immune mechanisms and Th1, Th2 and regulatory T-cells [1027, 1028].

Several questions remain unresolved, concerning notably the nature of protective infections, the mechanisms of protection, the spectrum of diseases concerned by the hypothesis, the difference between triggering and protective infections and lastly the strategies which could be devised to mimic the effect of infections [1003]. Moreover, the hygiene hypothesis differs in countries where helminth infections are common [995, 996] and atopy might prevent against enteric infections [1029].

# **5.2.3.** Other factors

- Changes in lifestyle [915]. An anthroposophic life style, such as restrictive use of antibiotics and vaccinations, an a diet containing live lactobacilli, appears to prevent the development of allergy in Sweden [1023]. The
- Obesity may increase the prevalence or the severity of symptoms in patients with allergic rhinitis, but more data are needed [1030-1032].
- Increase in exposure to allergen [1033], pollution [748] and irritants (smoke, gas...) [711, 1034]. Studies on the relationship between allergy in parents and allergy in their offspring should always consider the home environment as a potential confounder. For allergy prevention, results imply that among allergic parents there is an awareness and willingness to take measures to reduce exposure to indoor allergens [1035].
- Modification of diet responsible for the diminution of the intake of protective nutrients [1036, 1037].
- The link between physical activity, allergic diseases and asthma needs to be investigated in more detail. [1005, 1038].
- Stress.

## **5.2.4.** Natural history

Most longitudinal studies have explored the development of asthma in individuals suffering from allergic rhinitis. In many patients, rhinitis is an independent risk factor for the development of asthma (see chapter 9).

The prognosis of allergic rhinitis classically depends on age and sex but no clear data are available. With age, rhinitis symptoms tend to become milder [252, 275, 721] and simultaneously the allergic skin reactivity decreases in the elderly [1039]. Some studies found an increased prevalence of allergic rhinitis in young adults [1040-1046].

A few studies have examined the incidence and remission of allergic rhinitis in the same general population. A study from Denmark showed that the remission of allergic rhinitis symptoms was relatively infrequent, and that the remission of both symptoms and IgE sensitization was rare [1047]. A study in Sweden [1048] showed that the prevalence of allergic rhinitis increased from 12.4% in 1992 to 15.0% in 2000. The incidence of allergic rhinitis from 1992 to 2000 was 4.8%, while 23.1% of the cases with allergic rhinitis in 1992 stated no rhinitis symptoms in 2000 indicating remission. After a ten-year course of the disease, 20% of patients with non-allergic rhinitis reported spontaneous disappearance and 36% improvement [861].

The "Allergy March" from birth to adolescence is important in the understanding of the development of allergic rhinitis and other diseases (see chapters 9 and 11.1). In birth cohorts, it was found that the development of pollen-induced allergic rhinitis is characterized by a marked increase in prevalence and incidence after the second year of life [1049]. This study indicates that in combination with the risk of allergic predisposition, at least two

seasons of pollen allergen exposure are needed before allergic rhinitis becomes clinically manifest.

### **5.2.5.** Conclusion

Asthma and allergic rhinitis are common health problems that cause major illness and disability world wide. Studies such as the ISAAC [917] and the ECRHS [45] have demonstrated that asthma is a prevalent condition in most countries. These studies suggest that there are more than 300 million persons worldwide who are affected by asthma [1050]. Rhinitis is similarly seen as a worldwide condition with lifetime prevalence estimates between 10 and 20% of the population in the US, UK, Germany, Switzerland and Finland [854, 953, 1051, 1052].

Using a conservative estimate, it is proposed that allergic rhinitis occurs in around 500 million people.

- Over 100 million people in Europe and North America.
- Over 150 million people in Asia-Pacific.
- Over 100 million people in India, Pakistan and surrounding countries.
- Over 75 million people in Central and South America.
- Over 30 million people in Africa.
- Over 50 million people in other countries.

200 million also have asthma as a co-morbidity.

Moreover, non-allergic rhinitis/rhinosinusitis occur in hundreds of millions of people around the world since the attributable fraction of allergy in studies using a rhinitis questionnaire is around 50 to 60%, but the estimation is currently difficult.

Allergic rhinitis is a very common disease in western lifestyle countries. It tends to be more common in developed countries. Furthermore, an increase in the prevalence of allergic rhinitis is commonly observed in developing countries. However, knowledge of allergic rhinitis is far from complete. More studies on the epidemiology of allergic rhinitis should be advocated. They may provide useful clues towards the interpretation of the immunologic abnormalities associated with allergic diseases in general.

# **5.3. Social life**

It is now recognized that allergic rhinitis comprises more than the classical symptoms of sneezing, rhinorrhea and nasal obstruction. It is associated with impairments in how patients function in day-to-day life [1053]. It has been known for a long time that having an allergic reaction causes significant fatigue and mood changes [1054], some impairment of cognitive function [1055, 1056], depression and anxiety [1057, 1058]. Impairments on quality of life and work and school performance are common, particularly in patients with moderate/severe symptoms.

Quality-of-life is a concept including a large set of physical and psychological characteristics assessing problems in the social context of the lifestyle. In rhinitis, two types of HRQL (health-related quality of life) measures – generic and specific - have been used [1059-1061].

# 5.3.1. Generic QOL questionnaires

Generic questionnaires measure physical, mental and psycho-social functions in all health conditions irrespective of the underlying disease and can be used in the general population. The advantage of generic instruments is that the burden of illness across different disorders and patient populations can be compared.

Generic questionnaires include the Sickness Impact Profile, the Nottingham Health Profile and the Medical Outcomes Survey Short Form 36 (SF-36) [1062]. The SF-36 has been used to characterize patients with perennial rhinitis [52, 88], seasonal [1063-1065] and persistent rhinitis [1066-1068]. A new instrument examining satisfaction in 32 aspects of daily life (the Satisfaction Profile (SAT-P) was used in seasonal allergic rhinitis and was found to correlate with the SF-36 data [1069].

Rhinitis-related HRQL appears to be moderately correlated with the more classical outcome variables used in clinical trials such as daily symptom scores [1069] and nasal hyperreactivity [1070]. These observations are in line with the results of studies comparing disease-specific HRQL in asthmatics with asthma symptoms, peak flow and bronchial hyperresponsiveness [1071, 1072].

Pediatric questionnaires (teen version of the pediatric quality-of-life inventory (PedsQL) are available and showed an impaired QOL in adolescents with rhinitis [1073].

Impairment in the functioning of patients with moderate to severe perennial rhinitis [88] is comparable with the limitations perceived by asthmatic patients with a moderate to severe disease [1074]. The extent to which asthma and rhinitis co-morbidities are associated in HRQL has been studied in the same population [87]. Both asthma and allergic rhinitis were associated with an impairment in HRQL, but rhinitis was found to impair social life whereas asthma mostly impaired the physical component of HRQL.

Generic questionnaires of QOL show an improvement of QOL in patients treated with oral  $H_1$ -antihistamines and intranasal glucocorticosteroids in seasonal [1065, 1075, 1076], perennial [1077, 1078] and PER [1067]. However, the improvement is usually less important than with specific questionnaires [1065, 1067].

# 5.3.2. Specific QOL questionnaires

Health-related quality of life (HRQOL) questionnaires currently used to evaluate allergic disease are organ-specific. They therefore fail to take account of the systemic aspects of allergic disease. Specific instruments have been designed by asking patients what kind of problems they experience from their disease, rhinitis or conjunctivitis [1079]. Both the frequency and importance of impairments find expression in the questionnaires. These instruments have the advantage of describing more accurately the disease-associated problems of the patients. Moreover, they seem to be more responsive to changes in HRQL than generic instruments. The Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) [1080] and the Rhinitis Quality of Life Questionnaire [1081] have been tested in adult patients with seasonal allergic rhinitis, perennial allergic rhinitis as well as intermittent and PER. The RQLQ has been adapted to many different cultures and languages [89, 1082-1084]. Specific instruments for different age groups of patients with rhinitis have also been developed [89, 90, 1085] and other questionnaires have been proposed for rhinosinusitis [222, 226, 227, 1086].

The RQLQ scores are significantly impaired in patients with moderate/severe intermittent or persistent rhinitis by comparison with patients with mild intermittent or persistent rhinitis [84].

The Pediatric Allergic Disease Quality of Life Questionnaire (PADQLQ) was developed in children to encapsulate problems related to the eyes, ears, nose, lungs, skin, emotions and everyday activities [1087]. It was found that impairment in PADQLQ is directly related to the level of allergen exposure and allergic airway inflammation [1087]. The same approach was used in asthma and a QOL instrument assessing both asthma and rhinitis has been developed [1088]. RHINASTHMA was able to differentiate patients with rhinitis from those with both rhinitis and asthma.

## **5.3.3.** Evolution of QOL during interventions

The RQLQ has been used in several trials to assess the effect of intranasal glucocorticosteroids [1085, 1089-1094], oral H<sub>1</sub>-antihistamines in seasonal [1095-1097],

perennial [1077, 1078] and persistent rhinitis [1066, 1067, 1098], the combination of intranasal glucocorticosteroids and oral  $H_1$ -antihistamines [1099], leukotriene receptor antagonists [1100, 1101], allergen immunotherapy in pollinosis [1102-1104], omalizumab, an anti-IgE monoclonal antibody [768, 1105], allergen avoidance [1106] and homeopathy [1107]. Studies have also been performed in children [1108].

Generally, the effect on HRQL runs parallel with the effect on conventional medical outcome measures. However, in some studies, differences can be found indicating that patients perceive differences in efficacy, not captured by conventional symptom scores.

# 5.3.4. Quality-of-life instruments in the individual patients

Although studies have shown an impairment of QOL in rhinitis in a group of patients, these questionnaires are not currently applicable for use as a clinical tool in individual patients. Inclusion of these outcome measures in the evaluation and management of the individual patient should be the next step. Moreover, there is a need for a specific instrument measuring QOL in patients with both asthma and rhinitis and, if appropriate, this questionnaire may be used as a primary outcome variable in clinical trials.

# 5.3.5. Health-related QOL and health-care costs

The high prevalence of allergic rhinitis and the concern about health-care costs justifies the increasing interest for cost-effectiveness studies. Not only the efficacy of treatment has to be demonstrated, but also the cost effectiveness. In these studies, HRLQ measures have to be incorporated in order to make comparisons across patient populations and different disorders. QALYs (quality-adjusted life years) associated with different medical therapies can easily be incorporated into cost-effectiveness studies.

Utility instruments are mostly generic. A recent rhinitis-specific utility, the Multiattribute Rhinitis Symptom Utility Index, has been developed for clinical trials and for cost-effectiveness studies comparing medical treatment for rhinitis [1109].

# 5.4. Sleep disturbance

Poorly-controlled symptoms of allergic rhinitis may contribute to sleep loss or disturbance [94, 96, 98-104]. Moreover, sedation in patients with allergic rhinitis may be increased by using sedative treatments [105, 106]. Although sleep apnea syndrome has been associated with nasal disturbances [107-109], it is unclear whether allergic rhinitis is associated with sleep apnea [100, 107, 110]. It has been shown that patients with moderate/severe symptoms of intermittent or PER suffer from impaired sleep by comparison to normal subjects and patients with mild rhinitis All dimensions of sleep are impaired by allergic rhinitis, particularly by the moderate/severe type [111]. Seasonal allergic rhinitis leads to increased daytime sleepiness [1110].

# 5.5. Learning disability

In children with uncontrolled allergic rhinitis, learning problems occur during school hours either by direct interference or indirectly by nocturnal sleep loss and secondary daytime fatigue [95, 114, 116]. Seasonal allergic rhinitis may be associated with a reduced ability to learn [1111] and to be successful at examinations [1112]. Treatment with sedating oral  $H_1$ -antihistamines will aggravate these problems, whereas treatment with non-sedating oral  $H_1$ -anti histamines will only partially reverse the limitations in learning [115, 1113].

# 5.6. Work impairment

It is commonly accepted that allergic rhinitis impairs work [10, 84, 113, 1114, 1115]. It induces work absenteeism as well as a reduction in work productivity and presenteeism. Pollen and mold exposure impairs the work performance of employees with allergic rhinitis [1116]. Nasal congestion was found to impair work productivity [1117]. Work impairment is correlated with the severity of allergic rhinitis [84].

In a study in the US [562], allergic diseases were found to be major contributors to the total cost of health-related absenteeism and presenteeism. Allergic rhinitis was the most prevalent of the selected conditions; 55% of employees reported experiencing allergic rhinitis symptoms for an average of 52.5 days, were absent 3.6 days per year due to the condition and were unproductive 2.3 hours per work day when experiencing symptoms.

In the U.S., in 1994, allergic rhinitis resulted in approximately 811,000 missed work days, 824,000 missed school days and 4,230,000 reduced activity days per year [1118].

The economic impact of work place productivity losses compared several diseases including allergic. Allergies are major contributors to the total cost of health-related absenteeism and presenteeism. The mean total productivity (absenteeism and presenteeism) losses per employee per year were 593 US \$ for allergic rhinitis which was the first most costly disease of the study [562].

The treatment of allergic rhinitis was found to improve work productivity in pollen [1119] and PER [1115], but sedative oral  $H_1$ -antihistamines reduced work productivity [1120, 1121].

Very little is known about the impact of allergic rhinitis on the career of patients. Patients may not change or lose jobs except in the case of occupational allergy [1122]. On the other hand, some allergic subjects may not take part in work with a high allergen load such as bakers.

# 5.7. The social economic impact of asthma and rhinitis

Asthma and rhinitis are chronic conditions with a substantial economic impact on the affected persons and their families, on the health-care systems and on society as a whole. Persons with asthma or rhinitis must cope with both the immediate and long-term impact of a condition that often affects daily functioning. They are frequently required to make choices on how to re-allocate their personal and family resources--originally dedicated to daily needs such as food, clothing, and housing--to pay for medical care aimed at improving their condition.

The world literature on the economic burden of asthma and rhinitis has only recently emerged, and to date has focused primarily on asthma because this disease was thought to place more burden than rhinitis. However, the few individual studies examining the economic impact of rhinitis also provide compelling evidence of its substantial impact [1123]. Moreover, it is important to study the economic impact of rhinitis considering the patient globally with rhinitis co-morbidities [1124]. Data for children are less clear and results observed in developing countries may differ from those of Western populations [1125].

# 5.7.1. Understanding the costs of illness

The cost-of-illness study is the tool for understanding the economic burden of illness [1126]. This approach separates costs into those associated with medical-care treatments for the illness (direct costs) and those resulting from non-medical losses as a consequence of the illness (indirect costs). Standard methods exist for placing an incremental economic value on

direct medical-care costs and indirect non-medical costs. Intangible costs, specifically those associated with the value of the psychosocial impacts of illness, have also been theorized. However, to date, the methods for valuing intangible costs have not been fully developed. Costs of illness can be viewed from the perspective of the society, the health-care system (organizations within a community that provide or finance care) and/or the individual.

## 5.7.2. The costs of illness for rhinitis and its co-morbidities

Although several economic analyses of allergic rhinitis have been published, there are relatively few cost-of-illness studies outside the US.

In the USA, in 1994, the total costs for rhinitis were estimated to be 1.2 billion \$ [1118]. In 1996, direct costs for allergic rhinoconjunctivitis was 1.9 billion \$ [1127]. In another US study, the direct medical cost of rhinitis exceeded 3 billion \$ in 1996 and an additional cost of 4 billion \$ resulted from co-morbidities [1128]. The most recent estimates of the annual cost of allergic rhinitis range from 2 to 5 billion \$ (2003 values) [1129]. The wide range of estimates can be attributed to differences in identifying patients with allergic rhinitis, differences in cost assignment, limitations associated with available data and difficulties in assigning indirect costs (associated with reduced productivity) of allergic rhinitis. Rhinitis increases asthma costs [1130, 1131].

The National Health Interview Survey (NHIS) was used to obtain information on the days lost from work and on lost productivity due to allergic rhinitis [1132]. Wage estimates for occupations obtained from the Bureau of Labor Statistics (BLS) were used to calculate the costs. Productivity losses associated with a diagnosis of allergic rhinitis in the 1995 NHIS were estimated to be 601 million \$. When additional survey information on the use of sedating over-the-counter (OTC) allergy medications, as well as workers' self-assessments of their reduction in at-work productivity due to allergic rhinitis, were considered, the estimated productivity loss increased dramatically. At-work productivity losses were estimated to range from 2.4 billion \$ to 4.6 billion \$.

The cost of illness of atopic asthma and seasonal allergic rhinitis were studied in Germany [1133]. Overall, annual costs per patient increased with the severity of atopic asthma and if associated with allergic rhinitis. The average annual cost of seasonal allergic rhinitis was  $1,089 \in$  per child/adolescent and  $1,543 \in$  per adult.

In Ankara, Turkey, the mean cost of seasonal allergic rhinitis per person without a comorbid disorder during the grass pollen season was around 80 \$ without co-morbidity and reached around 140 \$ in the presence of asthma and/or conjunctivitis [1134].

The Japanese all belong to either a government, union or community health insurance system. An accurate report of total medical expenditures can therefore be reported. For 1994, the total costs for rhinitis were 1.15 Billion \$ including direct and indirect costs as well as OTC costs. The average annual expenditure was 118 \$ per patient [1135].

Direct medical cost parameters (medications, physician visits and hospitalizations) and time-lost parameters (work days and Usual Daily Activities (UDA)) related to PER and its comorbidities were measured in a prospective 6-month study comparing levocetirizine and placebo in patients with moderate/severe persistent rhinitis [1115]. From a societal perspective, the total cost of PER without long-term treatment was estimated at 355  $\epsilon$ /patient/month. Levocetirizine reduced the total cost of PER and its co-morbidities by 153  $\epsilon$  /patient/month from a societal perspective and by 65  $\epsilon$ /patient/month from an employer perspective. Most gains resulted from a decrease in lost work days and UDA in the levocetirizine group.

# 5.7.3. Best economic strategies for the care of asthma and rhinitis: cost-effectiveness studies

Traditionally, medical decisions were primarily based on the evidence of clinical efficacy and safety, but resource constraints directly and indirectly affect all medical treatment decisions. Yet, presently, there is too little information available to inform patients, health-care providers, and health-care systems as to the relative impact of various alternative treatments on resources and costs of care.

Sometimes decisions about which medical treatment or product to use are based on evidence from controlled clinical trials that focus on efficacy and safety as their specific aim. Efficacy is measured under tightly-controlled research conditions. These studies often involve very select patient populations, the results of which cannot be extended to all patients with rhinitis. Studies of clinical effectiveness have evolved in response to the need for more real-world information about treatment alternatives and patient outcomes. Effectiveness refers to the impact of the intervention or technology under routine operating conditions, administered to a more generalized patient population [1136, 1137]. Improvements to the early studies of effectiveness have led to the "cost-effectiveness" study design. This type of study design provides information on the effectiveness of various interventions in relation to the efficiency of consumption of economic resources [1138, 1139].

The increasing world-wide sensitivity to costs of eare in relation to improved health benefits has not gone unnoticed in the areas of asthma and rhinitis [1140, 1141]. To date, there are no clear dominant cost-effective treatment strategies for either asthma or rhinitis. However, there are studies to suggest that the use of inhaled glucocorticosteroids for persons with persistent asthma are reasonably cost-effective in comparison to using only rescue beta-agonist therapy [1141]. In rhinitis, the most effective drugs, e.g. intranasal glucocorticosteroids, are cost-effective when compared to less effective treatments, e.g. intranasal cromoglycate [1142]. Comparisons between intranasal glucocorticosteroids are difficult because drug pricing differs between countries [1143].

The direct medical cost of rhinitis in the US in 1999 showed that sales of prescription antihistamines and nasal steroids exceeded \$3 billion and \$1 billion, respectively [1128]. However, some of the most commonly prescribed drugs are now OTC and the economic impact of payer policies after the prescription-to-OTC switch of second-generation oral  $H_1$ -antihistamines is of importance [1144].

The balance between safety and efficacy should be clearly assessed and it has been found that first-generation oral  $H_1$ -antihistamines are not cost-effective because of the cost of associated sedation [1145].

The economic evaluation of specific immunotherapy versus symptomatic treatment of allergic rhinitis was modelized in Germany and subcutaneous immunotherapy was found to be cost effective [1146].

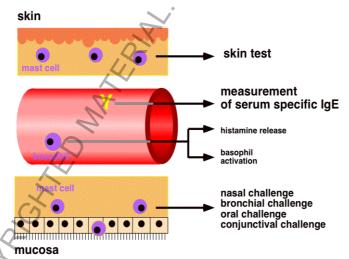
# 5.7.4. Policy implications of the economic burden of asthma and rhinitis

Health-care decision makers, such as health-care providers, and health planners are constantly faced with establishing priorities for the allocation of limited health-care resources-especially in developing countries. This prioritization spans chronic conditions--such as asthma and rhinitis—as well as communicable diseases, and must also consider the needs for health promotion and disease prevention.

Therefore, in order to reduce the global burden of asthma and rhinitis it will be necessary to first identify the degree of community-specific disease burden, and then establish credible justification for the re-allocation of health-care resources. The costs and benefits of introducing new asthma and rhinitis management programs must be considered not only in regards to cultural appropriateness but also in light of the existing resources of each community. Finally, these decisions must be examined relative to what the existing resources can purchase by way of other medical care and other non-medical goods [1140]. Greater awareness of the total economic burden of allergic rhinitis should encourage appropriate intervention and ultimately ensure clinically favorable and cost-effective outcomes [1147].

Also, while much of the focus on establishing new treatment strategies must rest on the community's willingness to provide resources, in most if not all communities, some of the burden of care for both asthma and rhinitis falls upon the individuals and their families. Many persons, with rhinitis in particular, seek healing not from the health-care practitioner, but from other sources ranging from non-prescription medications and herbal remedies to non-allopathic care providers. The individuals and their family are likely to carry much of the economic burden for this care. It is essential to further understand the value of such nontraditional approaches in comparison to allopathic care and its accompanying newer pharmacotherapeutic approaches.

## **5.7.5.** Conclusions


Millions of people suffer physical impairments, reductions in quality of life and economic consequences associated with rhinitis and its co-morbidities. Health-economic studies have helped to characterize the costs of these diseases, but are limited to studies of industrialized nations. There are even fewer comparative studies by which one can judge the most efficient ways to deliver health care for these conditions. With health-care costs increasing worldwide comes an increasing need for more advanced health economic studies if improvements are to be made to lessen the social and economic impact of these conditions.

# 6. Diagnosis

# **Diagnosis of allergic rhinitis**

- The diagnosis of allergic rhinitis is based upon the concordance between a typical history of allergic symptoms and diagnostic tests
- Typical symptoms of allergic rhinitis include rhinorrhea, sneezing, nasal obstruction and pruritus
- Ocular symptoms are common, in particular in patients allergic to outdoor allergens
- Diagnostic tests are based on the demonstration of allergen-specific IgE in the skin (skin tests) or the blood (specific IgE)
- The measurement of total IgE is not useful to the diagnosis of allergic rhinitis
- Many asymptomatic subjects can have positive skin tests and/or detectable serum-specific IgE
- Many patients have positive tests which are clinically irrelevant
- In some countries, the suspicion of allergic rhinitis may be addressed in the pharmacy
- Patients with persistent and/or moderate/severe symptoms of rhinitis should be referred to a physician
- Most patients with rhinitis are seen in primary care and, in developed countries, allergy tests are available to screen for allergy
- Patients with persistent and/or moderate/severe symptoms of rhinitis need a detailed allergy diagnosis

The diagnosis of allergic rhinitis is based upon the coordination between a typical history of allergic symptoms and diagnostic tests. *In vivo* and *in vitro* tests used to diagnose allergic diseases are directed towards the detection of free or cell-bound IgE (Figure 4).



### Figure 4 - Diagnosis of IgE-mediated allergy

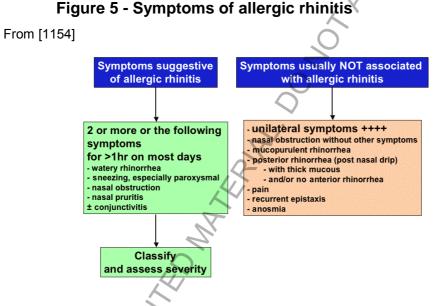
The diagnosis of allergy has been improved by allergen standardization which provides satisfactory diagnostic vaccines for most inhalant allergens. New techniques using recombinant allergens are already available and will be of great help in the future. It appears that allergy diagnosis improves patient care [1148].

Immediate-hypersensitivity skin tests are widely used to demonstrate an IgE-mediated allergic reaction and represent a major diagnostic tool in the field of allergy [1149, 1150].

The measurement of total-serum IgE has a poor predictive value for allergy screening in rhinitis and should not be used as a diagnostic tool [10]. In contrast, the measurement of

allergen-specific IgE in serum is of importance and has a value similar to that of skin tests [1151, 1152].

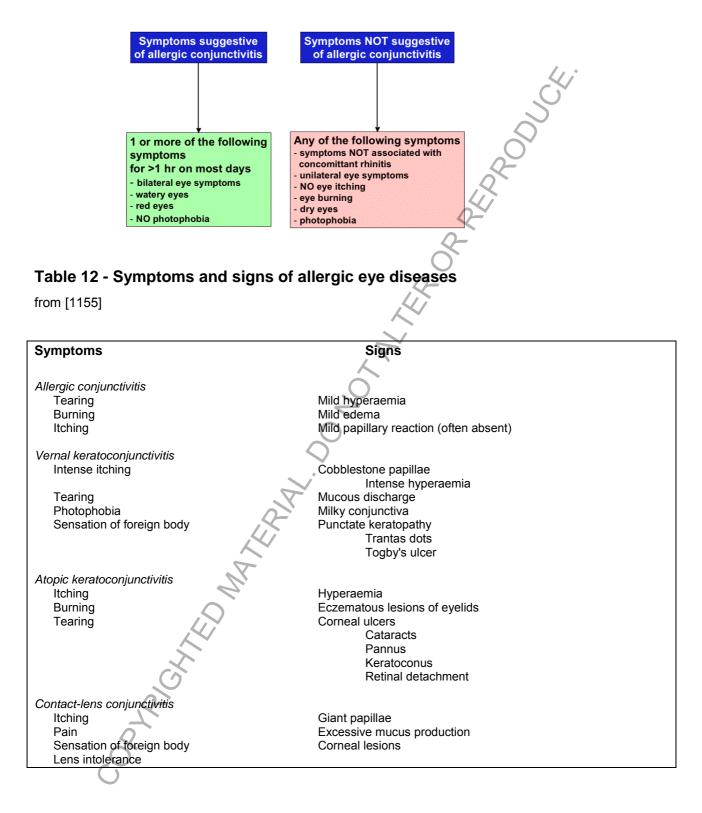
Some *in vitro* specific IgE methods use either a mixture of several allergens in a single assay [1153] or test several different allergens during a single assay. These tests can therefore be used by specialized doctors and non-allergists as screening tests for the diagnosis of allergic diseases.


Nasal and ocular challenge tests with allergens are used in research and, to a lesser extent, in clinical practice. However, they are important in the diagnosis of occupational rhinitis. Other tests have not yet been fully validated.

The tests and procedures listed below represent the spectrum of investigations, which may be used in the diagnosis of allergic rhinitis. However, only a certain number of these are routinely available or applicable to each individual patient.

# 6.1. History and general ENT examination

Clinical history is essential for an accurate diagnosis of rhinitis and for the assessment of its severity as well as its response to treatment. Patients with allergic rhinitis suffer from sneezing, anterior rhinorrhea and very often from bilateral nasal obstruction. This is usually the most bothersome symptom in patients with allergic rhinitis. Nasal obstruction can be observed in many other conditions.


Many patients do not consult a physician for nasal symptoms. However, some symptoms require urgent investigation (Figure 5).



Most patients with pollen-induced rhinitis present eye symptoms. It is also important to distinguish between allergic and non-allergic symptoms (Figure 6, Table 12).

Figure 6 - Symptoms of allergic conjunctivitis

From [1154]



Other signs and symptoms include:

• Significant loss of smell (hyposmia or anosmia) relatively infrequent in allergic rhinitis [1156-1159], but mild hyposmia is not rare.

- Snoring, sleep problems [95, 102, 103, 107].
- Post-nasal drip or chronic cough [1160, 1161], in particular if CRS is present.
- Rhinitis may induce sedation by itself [1162].

In patients with mild IAR, a nasal examination is optimal. All patients with PER should undergo nasal examination. Anterior rhinoscopy, using a speculum and mirror, provides limited information and nasal endoscopy is more useful. Nasal endoscopy is the next step which is useful in patients with treatment failures.

# 6.2. Skin tests

Immediate-hypersensitivity skin tests are widely used to demonstrate an IgE-mediated allergic reaction of the skin. These tests represent a major diagnostic tool in the field of allergy. If properly performed, they yield useful confirmatory evidence for a diagnosis of specific allergy. As there are many complexities in their performance and interpretation, it is recommended that they should be carried out by trained health professionals [1149]. Delayed hypersensitivity tests provide little information.

### 6.2.1. Methods

#### **6.2.1.1.** Skin testing methods

Several methods of skin testing are available.

<u>Scratch tests</u> should no longer be used because of poor reproducibility and possible systemic reactions.

<u>Prick and puncture tests</u> are recommended for the diagnosis of immediate-type allergy since there is a high degree of correlation between symptoms and provocative challenges. The modified skin prick test introduced by Pepys [1163] is the current reference method. Puncture tests with various devices were introduced to decrease the variability of skin prick tests [1164-1173]. With a trained investigator, they are highly reproducible [1171-1173]. Prick tests should be done according to a rigorous methodology [1174].

<u>Intradermal skin tests</u> may be employed for allergy diagnosis in some instances (e.g. weak allergen solution). They are not usually required for the diagnosis of inhalant allergy when standardized extracts are available [1149, 1175, 1176] as they correlate less well with symptoms [1177]. They may induce some false positive reactions. They are less safe to perform since systemic reactions can occur albeit rarely [1178, 1179].

<u>Prick-prick tests</u>: Prick plus prick tests with fresh foods were introduced to reduce the poor standardization of food extracts commercially available [1180-1183]. Although of interest, this test is not standardized and should be restricted to foods for which no recombinant allergen is available.

<u>Atopy patch tests</u> involve epicutaneous patch tests with allergens known to elicit IgEmediated reactions [1184]. Commercial reagents are available for a few allergens [1185]. They have been standardized regarding the use of vehicle and dose-response relationships [1186, 1187]. A subset of patients with atopic dermatitis show only atopy patch test positivity while specific IgE to the same allergen remains negative. Regarding food allergy, the atopy patch test still requires standardization [1188-1190]. It may also be difficult to differentiate between irritative and allergic reactions [1191].

It is recommended by Position Papers of the European Academy of Allergology and Clinical Immunology [1192], WHO [1193] and the US Joint Council of Allergy Asthma and Immunology [1194, 1195] that skin prick-puncture tests are a major test for the diagnosis of IgE-mediated allergic diseases.

### 6.2.1.2. Negative and positive control solutions

Due to interpatient variability in skin reactivity, it is necessary to include negative and positive controls in every skin test study.

The **negative control solutions** are the diluents used to preserve the allergen vaccines. The rare dermographic patient will produce wheal-and-erythema reactions to the negative control. Any reaction at the negative control test sites will hinder the interpretation of the allergen sites [1194].

**Positive control solutions** are used to detect suppression by medications or disease and determine variations in technician performance. The usual positive control for prick-puncture testing is histamine dihydrochloride (5.43 mmol/L or 2.7 mg/mL, equivalent to 1 mg/mL of histamine base) [1196]. However, a l0-fold greater concentration is more appropriate [1197]. Mast cell secretagogues such as codeine phosphate 2.5% [1168] or 9% may also be used [1198].

### 6.2.1.3. Skin tests with recombinant allergens

A current diagnosis of allergy relies on natural extracts that may lack standardization and/or be degraded rapidly in solution. Recombinant DNA technology allows the production of pure biochemically characterized proteins. Skin tests with recombinant allergens were available in the 1990s for pollens [1199], molds such as *Aspergillus* [1200], mites [1201, 1202], venoms [1203, 1204] or latex [1205]. Skin tests with recombinant and natural allergens have a similar value [1206-1210] if the recombinant allergens have been well selected and represent all or most epitopes of the natural allergen [1211-1214]. Panels of recombinant allergens are available for the component-resolved diagnosis of allergy [1215].

Food allergens are usually non-standardized and unstable in solution. Recombinant allergens are useful for the diagnosis of food allergy such as apple [525, 1216], celery [553], peanut [1217] or cherry [1218]. Skin tests with recombinant food allergens can be an alternative to prick-prick tests with foods [1219].

# 6.2.2. Criteria of positivity

Skin tests should be read at the peak of their reaction by measuring the wheal and the flare approximately 15 minutes after the performance of the tests. Late-phase reactions are not recorded because their exact significance is not known [1192, 1194, 1220].

For prick tests, when the control site is completely negative, small wheals of less than 3 mm represent a positive immunological response [1163, 1221]. However, these reactions do not necessarily imply the presence of a clinically relevant allergy [1149].

# 6.2.3. Factors affecting skin testing

Skin reaction is dependent on a number of variables that may alter the performance of the skin tests.

The <u>quality of the allergen extract</u> (vaccine) is of importance. When possible, allergens that are standardized by using biological methods and labeled in biological units or  $\mu g$  of major allergen should be used [1192, 1194]. Recombinant allergens can also be used accurately [1208].

<u>Age</u> is known to affect the size of skin tests [1222] but positive skin prick tests can be found early in infancy [1223, 1224]. In the elderly patient, the size of skin tests is decreased [1225, 1226].

<u>Seasonal variations</u> related to specific IgE antibody synthesis have been demonstrated in pollen allergy [1227]. Skin sensitivity increases after the pollen season and

then declines until the next season. This effect has some importance in patients with a low sensitivity [1228] and/or in patients sensitized to allergens such as cypress pollen [388].

**Drugs** affect skin tests and it is always necessary to question patients on the drugs they have taken. This is particularly the case for oral  $H_1$ -antihistamines, but also for other drugs which are not necessarily used for the treatment of allergic diseases (for review see [1149, 1229, 1230] (Table 13). Montelukast does not appear to reduce skin test reactivity [1231, 1232] and does not need to be discontinued before skin testing.

### Table 13 – Drugs affecting the performance of skin tests

|                                             | Suppression              | 0           | $\sum$       |
|---------------------------------------------|--------------------------|-------------|--------------|
|                                             |                          | Q           | Clinical     |
| Treatment                                   | Degree                   | Duration    | Significance |
|                                             | Anti-H1 histamines       |             |              |
| Cetirizine                                  | ++++                     | 3-10 days   | Yes          |
| Chlorpheniramine                            | ++                       | 1-3 days    | Yes          |
| Desloratadine                               | ++++                     | 3-10 days   | Yes          |
| Ebastine                                    | ++++                     | 3-10 days   | Yes          |
| Hydroxyzine                                 | +++                      | 1-10 days   | Yes          |
| Levocabastine (topical)                     | Poss                     |             | Yes          |
| Levocetirizine                              | ++++                     | ✓ 3-10 days | Yes          |
| Loratadine                                  | ++++                     | 3-10 days   | Yes          |
| Mequitazine                                 | ++++                     | 3-10 days   | Yes          |
| Mizolastine                                 | ++++                     | 3-10 days   | Yes          |
| Promethazine                                | ++                       | 1-3 days    | Yes          |
| Ketotifen                                   | ++++                     | >5 days     | Yes          |
|                                             | Anti-H2 histamines       |             |              |
| Cimetidine/ranitidine                       | 0 to +                   |             | No           |
|                                             |                          |             |              |
|                                             |                          |             |              |
| Imipramines                                 | +++++                    | >10 days    | Yes          |
| Phenothiazines <sup>132</sup>               | ++                       | ?           | Yes          |
| Systemia short term                         | Glucocorticosteroids     |             |              |
| Systemic, short term<br>Systemic, long term | 0<br>Possible            |             | Yes          |
| Inhaled                                     |                          |             | res          |
|                                             | 0<br>0 to ++             |             | Yes          |
| Topical skin                                | 0 10 ++                  |             | res          |
| Theophylline                                | 0 to +                   |             | No           |
| Cromolyn                                    | 0                        |             |              |
| 47                                          | ß <sub>2</sub> -Agonists |             |              |
| Inhaled                                     | 0 to +                   |             | No           |
| Oral, injection                             | 0 to ++                  |             | No           |
| Formoterol                                  | Unkn                     |             |              |
| Salmeterol                                  | Unkn                     | iown        |              |
| Dopamine                                    | +                        |             |              |
| Clonidine                                   | ++                       |             |              |
| 0                                           |                          |             |              |
| Montelukast                                 | 0                        |             |              |
|                                             | <b>A 1</b>               |             |              |
| Specific immunotherapy                      | 0 to ++                  |             | No           |
|                                             |                          |             |              |

\*Clinical significance for skin testing

0 to +++: intensity of skin test suppression

Patients with skin disease may not be tested because of dermographism (urticaria) or widespread skin lesions.

# 6.2.4. Interpretation of skin tests

Carefully performed and correctly interpreted, skin tests with high-quality allergen vaccines and a battery that includes all the relevant allergens of the patient's geographic area are a simple, painless and highly efficient method. Therefore, skin testing represents one of the primary tools for allergy diagnosis by the trained physician.

Both false-positive and false-negative skin tests may occur due to improper technique or material. False-positive skin tests may result from dermographism or may be caused by "irritant" reactions or a non-specific enhancement from a nearby strong reaction.

False-negative skin tests can be caused by:

- Extracts of poor initial potency or subsequent loss of potency [1177].
- Drugs modulating the allergic reaction.
- Diseases attenuating the skin response.
- Improper technique (no or weak puncture).

Even after false-positive and false-negative tests have been eliminated, the proper interpretation of results requires a thorough knowledge of the history and physical findings. A positive skin test alone does not confirm a definite clinical reactivity to an allergen.

## 6.3. In vitro tests

The discovery of IgE in 1967 was a major advance in the understanding and diagnosis of allergic diseases [1233, 1234].

# 6.3.1. Serum-total IgE

Serum-total IgE is measured using radio- or enzyme-immuno assays. In normal subjects, levels of IgE increase from birth (0-1 KU/l) to adolescence and then decrease slowly and reach a plateau after the age of 20-30 years. In adults, levels of over 100-150 KU/l are considered to be above normal. Allergic and parasitic diseases as well as many other conditions increase the levels of total IgE in serum [1235]. Thus, the measurement of total-serum IgE should no longer be used for the screening or allergy diagnosis [1, 10].

# **6.3.2.** Serum-specific IgE using classical methods

The measurement of allergen-specific IgE in serum is of importance.

#### 6.3.2.1. Methods and criteria of positivity

The first technique ever used to accurately measure serum-specific IgE was the RAST (radioallergosorbent test) [1236, 1237]. New techniques are now available using either radioor enzyme-labeled anti-IgE [1151, 1152, 1238-1241]. Results are expressed in terms of total radioactive counts bound (cpm), arbitrary units (RAST class, PRU/ml) or units of IgE (IU/ml, KU/l). However, it is advisable to use a quantitative measurement [1242, 1243].

### 6.3.2.2. Factors affecting the measurement of serum-specific IgE

Many factors can affect the measurement of IgE [1244]. The different reagents are critical for an appropriate assay (for review see [1]). In particular, the anti-IgE preparations applied must be Fc $\epsilon$ -specific preferably containing combinations of monoclonal antibodies with specificities against more than one epitope on the Fc fragment [1245]. Calibrators should be traceable to the WHO International Reference Preparation for human IgE, 75/502 [1245].

As for skin tests, the quality of the allergens is of critical importance and, when possible, only standardized extracts should be used.

Recombinant allergens have been used for the *in vitro* diagnosis of grass [1206, 1207, 1213, 1246, 1247], birch and Fagaleae [1248-1253], Oleaceae [1199, 1254] pollens or mites

[1255-1257]. A single recombinant allergen or a combination of a few major recombinant allergens can substitute the crude extract for *in vitro* diagnostic purposes [1258, 1259]. Another possibility is to add some relevant recombinant allergens to an allergen extract. It also seems that the *in vitro* diagnosis for pollen allergy can be simplified using recombinant allergens. The use of a complete panel of grass allergenic molecules can mimic the current use of allergenic extracts, but new relevant information, such as an individual pattern of reactivity, adjusted prevalence, correct specific IgE concentration, can be achieved only by means of discrete allergenic molecules [1260]. Panels of recombinant allergens are available for a component-resolved diagnosis of allergy [1215].

IgE cross-reactivity between pollen and food allergens represents the molecular basis for oral allergy syndrome. Quantitative birch-specific IgE levels proved useful in predicting clinical allergy symptoms with birch exposure [1261, 1262].

Specific IgE measurements are not influenced by drugs or skin diseases.

# 6.3.3. Significance of serum allergen-specific IgE

Using standardized allergen vaccines, serum-specific IgE results correlate closely to those of skin tests and nasal challenges.

As in skin tests, the presence or absence of specific IgE in the serum does not preclude symptoms, and many symptom-free subjects have serum-specific IgE.

The cutoff IgE level above which an IgE test is positive is usually 0.35 KU/l. However, some sensitized subjects have an IgE level below this cutoff, and the measurement of serum-specific IgE is usually less sensitive than skin prick tests [1263].

The cutoff IgE level above which most patients present symptoms is still a matter of debate in inhalant [1264, 1265] and food allergy [1266-1268]. Although a low specific IgE titre may not be clinically relevant, the titre of serum-specific IgE is usually unrelated with the severity of symptoms. However, wheeze and serum-specific IgE titres have been correlated in a group of subjects [1269] but the exact value of this finding in individual patients is still unclear. This is because the severity of symptoms depends not only on IgE antibodies but also on the releasability of mediators, the response of the target organ to mediators and non-specific hypersensitivity.

When using single allergen tests, the cost of serum-specific IgE measurement is high and only a selected list of allergens can usually be tested.

# 6.3.4. Serum-specific IgE using microarray technology

New options are provided by allergen microarray technology, which makes it possible to determine not only the specific antigenic protein but also to analyze different epitopes. Such a technique has been used for inhalant and food allergens [1270-1276]. Although this method is still a research tool, it has a great potential for the future component-resolved diagnosis of allergy,

# 6.3.5. Screening tests using serum-specific IgE

Some methods use either a mixture of several allergens in a single assay [1153, 1277-1279] or test several different allergens during a single assay [1280]. These tests can therefore be used by allergy specialists and non-allergists as screening tests for the diagnosis of allergic diseases.

The clinical relevance of these tests has been extensively studied and it has been shown that their predictive value (specificity and sensitivity) in allergy diagnosis is often over 85% [1153]. However, using most of these tests, the patient is defined only as allergic or non-allergic and more extensive investigations for rhinitis are needed if the test is positive.

# 6.3.6. Peripheral blood activation markers

The blood basophils of allergic patients can degranulate and release mediators (histamine and CysLT) when stimulated by the specific allergen. The assay of mediators (e.g. histamine release or CysLT release), the microscopic examination of cells (e.g. basophil degranulation test) or the activation of cells can be performed. In the early 1980s, the basophil degranulation test was proposed but never fully validated [1281].

New basophil activation tests are based upon the expression of CD63 (gp53) [1282-1285], CD45 [1286] or CD203 [1287] in the presence of allergens or non-specific stimuli measured using cytofluorimetry. These tests may be of interest in some difficult cases such as cypress-pollen allergy [1288] but they require sophisticated equipment (cytofluorimetry) and further evaluation.

Recombinant allergens have also been used for histamine release [1289] and the CD63 activation of basophils. The CD63-based basophil activation test with recombinant allergens may supplement routine tests for allergy diagnosis [1290]. Basophil allergen threshold sensitivity might be a useful approach to anti-IgE treatment efficacy evaluation [1287].

Tests based on CysLT release after allergen challenge may be interesting but further studies are required [1291-1293]. More data are needed to fully appreciate the value of these tests.

### 6.3.7. Nasal-specific IgE

It has been proposed that some patients may have a local IgE immune response without any systemic release of IgE [1294, 1295], e.g. negative skin tests and serum-specific IgE. Based on current data, the concept of local allergic reaction in the nose without systemic IgE release is not fully supported [1296] and the measurement of IgE in nasal secretions cannot be routinely proposed [1297, 1298].

# 6.4. Nasal challenge tests

Nasal challenge tests are used in research and, to a lesser extent in clinical practice. For standardized allergens, challenges are not usually necessary to confirm the diagnosis of inhalant allergy. However, they are important in the diagnosis of occupational rhinitis.

Recommendations on and a critical analysis of nasal provocations and methods to measure the effects of such tests have already been published [1299] by a subcommittee of the "International Committee on Objective Assessment of the Nasal Airways" which has put forward guidelines for nasal provocation tests concerning indications, techniques and evaluations regarding the tests [1300] (Table 14).

#### Table 14 - Indications for nasal challenge tests

from [1300]

#### 1- Allergen provocations:

- When there are discrepancies between the history of allergic rhinitis and tests (in cases of diagnostic doubt).
- For the diagnosis of occupational allergic rhinitis.
- Before immunotherapy for allergic rhinitis although it is very rare to use nasal provocation before starting immunotherapy.
- For research.

**2- Lysine-aspirin:** Nasal provocation is recommended as a substitute for oral provocation in aspirin intolerance. Whenever such a nasal provocation is negative, an oral test is still required [1301].

**3- To test non-specific hyperreactivity:** Nasal provocation with non-specific stimuli (histamine, methacholine, cold dry air, kinin, capsaicin, etc.) is not relevant for daily clinical practice and diagnosis but can be used in research.

# 6.4.1. Nasal challenge with allergen

### 6.4.1.1. Methods

Different methods for the provocation and measurement of nasal challenge are used. Each technique has its own advantages and restrictions. For clinical purposes, techniques for qualitative measurements may be appropriate, but for experimental research, quantitative measurements with high reproducibility are essential [1302]

The measurement of cells and mediators in the nose may increase the sensitivity of nasal challenges [1303-1306] but more data are needed.

## 6.4.1.2. - Factors affecting nasal challenge

As in other *in vivo* tests, the major factors affecting nasal challenge are the quality of the allergens used as well as the drugs taken by the patient. Sodium cromoglycate and usual oral  $H_1$ -antihistamines should be withdrawn 48 hours before the test and intranasal glucocorticosteroids 3 to 6 days before. Nasal vasoconstrictors modify nasal airflow but do not have any effect on sneezing or mediator release and cell infiltration during nasal challenges. Specific immunotherapy decreases the sensitivity of the nose to allergens.

Moreover, other factors are more specific to nasal challenge, including technical problems and inflammation of the nasal mucosa [1]. An allergic reaction significantly increases the reactivity of the nose because of the priming effect initially described by Connell [72, 74, 1307-1309]. This effect may be seen for up to 6 weeks.

Viral infections induce the release of histamine [1310] and pro-inflammatory mediators such as Cyst-LT and cytokines in nasal secretions. Nasal challenges should thus be performed at least 2 to 4 weeks after any allergic or infectious episode.

Finally, the nasal cycle [1311] should be taken into consideration when rhinomanometry is used.

# 6.4.1.3. Nasal challenge with non-specific agents

Non-specific nasal hyperreactivity is commonly observed in patients with allergic rhinitis [784, 832, 838, 1312]. Challenges with methacholine or histamine have been widely carried out. Methacholine and histamine both induce a dose-dependent increase in secretion weights on the challenge site, whereas histamine alone induces a contralateral reflex. Repeated stimulation with histamine, but not methacholine, results in tachyphylaxis [1313];

# **6.4.2.** Challenge with occupational agents:

The diagnosis of occupational rhinitis is often complex and requires nasal provocation tests with the relevant occupational agent [144, 1314-1318]. The challenge can be carried out in the form of a natural exposure, especially if the relevant allergen is unavailable. As an example, this has been done for laboratory animal allergy in a vivarium during cage cleaning (high-allergen challenge), quiet sitting (low-allergen challenge) and in a remote location (sham challenge) [1319].

# **6.5.** Environmental exposure units

There is an increasing need for allergen inhalation systems to perform basic clinical research and test anti-allergic drugs under well-controlled conditions. This requires stable environmental conditions (e.g. temperature and humidity), as well as allergen concentration

and the reproducible induction of allergic symptoms. Nasal, ocular and bronchial symptoms can be measured.

Pollen exposure in the environmental exposure unit is an effective, reproducible, safe and suitable method for single-center clinical studies [1320-1323]. These exposure units are mostly used to assess the efficacy of anti-allergic treatments. However, there are pitfalls in these studies since the priming effect on the nasal mucosa is not considered in most studies [72, 74, 1307-1309] and the results of the challenges may not accord with the clinical data obtained from RCTs. These chambers are commonly used to assess the onset of action of medications.

Park studies have been used to assess the onset and magnitude of efficacy of treatments for pollen-induced allergic rhinitis [1324, 1325].

In cat allergy, exposure to cats in environmental exposure units has been widely used [1326-1329] but there is a high variability of cat allergen during the study.

The Vienna chamber was also used in mite allergy [1330].

There are also environmental exposure units which are used for the diagnosis of occupational allergy. These are of great value and have been used for example for latex sensitization [1331, 1332].

# **6.6. Other tests**

# 6.6.1. Mediators released during allergic reactions

The measurement of mediators such as histamine, PGD<sub>2</sub>, CysLTs, kinins, tryptase and ECP released into peripheral blood, nasal secretions or urine during provocation challenge or an allergic reaction represents a research tool.

# 6.6.2. Cytology and histology

Nasal cytology and histology usually represent a research tool.

# 6.6.3. Measurement of nitric oxide in exhaled air

Measurements of nasal nitric oxide (nNO) are attractive because they are completely noninvasive and can easily be performed [1333-1337]. The measurements may be useful in the early diagnosis of patients with chronic airway disorders such as Kartagener's syndrome and cystic fibrosis in which low levels are found [1338-1340]. The possible use of nNO measurements in the diagnosis and treatment of allergic rhinitis still needs to be further evaluated because of the variable and also contradictory findings of nNO concentrations in this disease [123, 1337, 1341-1343].

# 6.7. Diagnosis of immediate-type allergy

The diagnosis of allergy is based on the correlation between the clinical history and tests. No possible diagnosis can be based only on responses to skin tests, *in vitro* tests or even challenges [1344]. Factors affecting tests should always be checked before investigations and, in particular, treatments because some may modify the results of *in vivo* tests for several days. For these reasons, patients may benefit more from skin testing by specially trained health professionals.

Allergic rhinitis is a growing primary care challenge since most patients consult primary care physicians [1345]. General practitioners play a major role in the management of allergic rhinitis as they make the diagnosis, start the treatment, give the relevant information, and monitor most of the patients [113]. In some countries, general practitioners perform skin prick tests. Studies in Holland and the UK found that common nasal allergies can be diagnosed with a high certainty using simple diagnostic criteria [1346, 1347].

However, with the large use of OTC drugs, many patients do not consult a physician for their nasal symptoms and buy their drugs in the pharmacy, although there are large differences between countries concerning the role of the pharmacist. Finally, a large number of patients are not aware of their rhinitis and do not receive any treatment.

# 6.7.1. Asymptomatic sensitized subjects

The occurrence of positive responses to skin tests or the presence of specific IgE [1348] does not necessarily imply that the IgE mediated allergy is related to symptoms, since skin prick tests are positive in up to 43% of symptom-free individuals depending on the allergen, the skin test method, the area and the population studied (patients or general population) [1349-1355]. Using passive transfer tests, it was shown that these antibodies were functional [1349, 1350]. In the general population (Dutch ECRHS study), 43% of the subjects with IgE to inhalant allergens did not present respiratory symptoms [1355] [289]. In longitudinal studies, the presence of positive skin tests in non-symptomatic subjects predicts the onset of allergic symptoms including asthma [1042, 1356-1360], especially if the allergen load is high. The optimal cut-off values for clinically relevant skin prick test results have been reported for some inhalant allergens [1264, 1265] but more data are needed.

# 6.7.2. Mono and polysensitized subjects

Exposed to a common environment, the IgE-mediated immune response differs among sensitized subjects, some of them reacting to one allergen (monosensitized), whereas others are sensitized to many allergens (polysensitized) [387, 1361-1363]. Taking into consideration cross-reactivities between allergens and panallergens [525, 557, 1364], a minority of symptomatic patients are sensitized to a single allergen (monosensitized) [1362].

Monosensitized patients often appear to be either children who may develop polysensitization later in life or adults who will only develop a single allergenic sensitivity [388, 1365, 1366].

Many polysensitized patients present clinically irrelevant positive skin tests and/or specific IgE because the patient clinically reacts to some allergens only or because panallergens explain cross-reactive positivities. This is why it is essential to confront the results of skin tests and/or specific IgE with the timing of allergen exposure. Allergy diagnosis based on allergenic molecules is important for the detection of panallergens or multiple allergen reactivities [1367].

## 6.7.3. - Correlation between tests

Serum-specific IgE, skin prick tests and allergen challenge do not have the same biological and clinical relevance and are not interchangeable [55, 1368].

Skin tests represent the primary diagnostic tools used for immediate-type hypersensitivity for physicians who are trained to perform and interpret them.

Comparisons between the measurement of specific IgE and skin tests depend on the quality and standardization of the allergens used in both types of tests and, to a lesser extent, on the method of skin testing used. The worst correlations have been obtained with mold, food extracts and unstandardized extracts. There are significant correlations between a strongly positive response to a skin test and the detection of serum-specific IgE and between a negative response to a prick tests and positive results of intradermal tests with concentrated extracts are less frequently associated with the detection of serum-specific IgE [56, 1369]. Moreover, low levels of serum specific IgE are less often associated with symptoms than higher levels, but they do not exclude allergic symptoms [1243, 1370]. Correlations between

responses to skin tests or serum-specific IgE and nasal challenges are less consistent because of the non-specific hyperreactivity.

There is usually a lack of correlation between titres of serum allergen-specific IgE and symptoms in untreated patients with seasonal allergic rhinitis [1371].

## 6.7.4. - Diagnosis of inhalant allergy

The diagnosis of allergic rhinitis should reflect the differences in practices and, where applicable, should help pharmacists to advise their patients.

With inhalant allergens, skin test responses represent one of the first-line diagnostic methods and when they correlate with the clinical history, *in vitro* tests may not be required [1192, 1194, 1344, 1372, 1373]. The costs of each procedure need to be considered [1374, 1375]. The decision to initiate diagnostic testing must rely on clinical judgment to select patients who would benefit most from determining their allergic status while minimizing unnecessary testing and medications [1376].

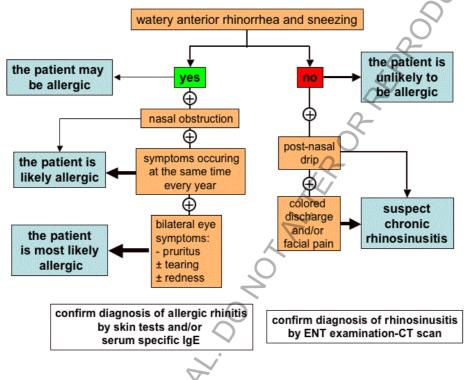
The diagnosis of inhalant allergy differs in specialist and general practices [1346, 1347].

In most specialist practices, skin tests represent the first diagnostic method in patients with a suggestive clinical history. If there is a correlation between the occurrence of symptoms and skin tests, serum-specific IgE and challenges are not usually needed. If there are discrepancies or multiple allergen sensitivities, serum IgE and eventually nasal challenges may help to better characterize patients.

In general practice, skin tests are rarely available and a specific IgE screening is carried out. If positive, the physician may request specialist advice for the exact diagnosis of allergen sensitization. It has recently been shown that, in general practice, common nasal allergies can be diagnosed efficiently with the aid of simple diagnostic criteria using either skin prick tests or serum-specific IgE [1346].

Some patients who present at the pharmacy will have had allergic rhinitis previously diagnosed by a physician, others will have made an appropriate self-diagnosis, some will not have any diagnosis of rhinitis or may even have an incorrect diagnosis (e.g. a viral infection, cold or a severe nasal condition requiring rapid recognition). The pharmacist should always therefore ask patients to give an account of his or her symptoms to assist in recognizing the disease and assessing the severity. The most commonly reported symptoms are sneezing and an itchy, congested nose (nasal blockage) as well as a runny nose (nasal discharge or rhinorrhea) [1377, 1378]. If the patient does not provide sufficient information about symptoms to determine a diagnosis, more information can be elicited by structured questioning (Table 15).

Nurses may also play an important role in the identification of allergic diseases including allergic rhinitis in the primary care of developing countries and in schools.


## Table 15 - Questions to elicit information.

| • | What is your main symptom? (Check for rhinorrhea, sneezing, itchy nose, nasal congestion and/or obstruction, watery or itchy eyes.)                                                   |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <ul> <li>Has a physician ever diagnosed that you have hay fever, allergic rhinitis or asthma?</li> </ul>                                                                              |
|   | <ul> <li>How long have you had these symptoms?</li> </ul>                                                                                                                             |
|   | <ul> <li>Do you have the symptoms all the time or do they come and go?</li> </ul>                                                                                                     |
|   | <ul> <li>Are you aware of anything that seems to bring the symptoms on, such as being outdoors,<br/>around animals, or related to something you handle at work or at home?</li> </ul> |
|   |                                                                                                                                                                                       |
|   | <ul> <li>Is your nasal discharge clear and watery? (purulent discharge suggests infection)</li> </ul>                                                                                 |
| • | Do you have an earache or pain in your face? ("Yes" may indicate otitis media or sinusitis.)                                                                                          |

- Do you have eye symptoms ?
- Do you have a family member with allergy problems ?
- What medications have you already tried for these symptoms ?
- Do you have any other medical conditions or are you on any other medication ?

Allergic rhinitis presents with symptoms similar to those of a number of other conditions and may be confused with a viral infection such as the common cold and with chronic sinusitis. Figure 7 presents a symptom-based algorithm for differentiating allergic rhinitis from another cause or infectious diseases.

#### Figure 7 Diagnosis algorithm of allergic rhinitis



This figure does not apply to pre-school children.

Some patients with allergic rhinitis may only have nasal obstruction as a cardinal symptom.

Some patients with mild allergic rhinitis may have dissociated symptoms of rhinorrhea, sneezing and nasal obstruction

## 6.7.5. - Diagnosis of food allergy

Tests for IgE-mediated food allergy include skin prick tests and the measurement of serum allergen-specific IgE antibodies [1266, 1268, 1379, 1380]. However, the diagnosis of food allergy is compounded because currently available allergen vaccines and test reagents are not standardized and their stability is poorly determined [195, 1381, 1382]. Recombinant allergens improve the diagnosis of food allergy [1217]. The presence of food-specific IgE in serum or a positive skin test to a foodstuff does not always correlate with food allergic symptoms since many patients outgrow their allergy with age [1383, 1384] and not all patients with food-specific IgE have a clinical sensitivity [1385]. In many instances, the diagnosis has to be confirmed by a double-blind food challenge that should be carried out under precisely specified conditions [1386-1388] and by trained staff who have the competence to manage anaphylactic reactions. As for other forms of allergy, unproven and controversial techniques such as food-specific IgG or cytotoxic tests have no proven value (1).

Many patients with pollen allergy develop fruit and vegetable allergy due to the cross-reactivity between allergens, but there are large differences between patients [1389].

### 6.7.6. - Diagnosis of occupational allergy

Occupational rhinitis must be more precisely confirmed than allergic rhinitis of other aetiology. In practice, interviews concerning the causal relation, frequency, latent period and atopic disposition often provide suggestions but sometimes give unreliable evidence to base the diagnosis of occupational nasal allergy. Therefore nasal provocation tests [144, 1314-1317] are necessary to confirm the causality between the disease and any work exposure [1390].

## 6.8. Other ENT diagnosis

#### 6.8.1. Bacteriology

Routine swabs for bacterial culture taken blindly from the nose and nostril are not diagnostically helpful. This may not be the case if the swabs are taken endoscopically from the middle meatus.

### 6.8.2. Nasal endoscopy

The availability of nasal endoscopes enables the physician to visualize the posterior nasal cavity and the middle meatus [1391].

#### 6.8.3. Imaging

Plain sinus radiographs are not indicated in the diagnosis of allergic rhinitis or rhinosinusitis.

CT has become the principal radiological investigation for major sino-nasal disorders but is of limited use in the diagnosis of allergic rhinitis [1392-1396]. CT scans can be carried out after receiving specialist advice:

- To eliminate other conditions.
- To exclude CRS, especially after nasal examination with optical devices.
- To eliminate complications in rhinitis.
- In patients who do not respond to treatment.
- In patients with unilateral rhinitis,

Magnetic resonance imaging [1397] is rarely indicated as a diagnostic tool. However, there are circumstances where MRI is useful, in particular in fungal sinusitis, tumors and encephaloceles.

## 6.8.4. Mucociliary function

Tests for mucociliary clearance or ciliary beat frequency have little relevance in the diagnosis of allergic rhinitis but are relevant in the differential diagnosis of chronic rhinorrhea in children and in immotile cilia syndrome.

## 6.9. Assessment of the severity and control of rhinitis

For asthma, there are objective measures of severity such as pulmonary function tests and well-defined criteria for symptom severity [1140]. More recently, control tests based on a few symptoms and reliever medication requirements have been proposed. For atopic dermatitis, there are validated clinical scores of severity such as SCORAD [1398]. For asthma, control tests are also available [1399, 1400]. However, for allergic rhinitis, control questionnaires or methods are still undergoing validation.

### 6.9.1. Control questionnaires and visual analogue tests

Several groups are attempting to propose rhinitis control questionnaires. The ARIA scoring system uses several questions and cannot be quantified. Moreover, when applied to general practices, a more simple evaluation is favored. Visual analogue scales (VAS) are quantitative measures largely validated in many diseases [1401, 1402]. The scales have been extensively used to assess the severity of rhinitis [728, 1403-1406] as well as the efficacy of therapeutic interventions [118, 1406-1410]. The VAS was proposed by the Joint Task Force on Practice Parameters for the symptom severity assessment of allergic rhinitis [118]. This Task Force proposed to use several VAS to account for the different symptoms of allergic rhinitis since some, such as nasal congestion, may be more relevant to rhinitis severity [1117]. On the other hand, several VAS scores may be difficult to combine and a single VAS scale was used to assess the global perception of rhinitis severity in general practices. It was found to correlate very well with the severity assessed by ARIA [119].

As in asthma [67], the control of rhinitis symptoms is independent of treatment [119].

## 6.9.2. Objective measures of severity

Routine measurements of nasal obstruction and smell measurements are used. Reactivity measurements include provocation with histamine, methacholine, allergen, hypertonic saline, capsaicin or cold dry air [124]. NO measurement and other measures are primarily used in research.

#### 6.9.2.1. Measurement of nasal obstruction

Nasal obstruction is difficult to quantify directly by clinical examination, so objective assessments such as peak nasal inspiratory flow (PNIF), rhinomanometry and acoustic rhinometry are used [120-122]. In daily practice, PNIF is attracting more and more attention, because it is simple, cheap, fast and readily available [122, 1411]. Moreover, PNIF is reproducible and related to the signs of rhinitis, as determined by clinical examination [122]. The PNIF provides information that is qualitatively different to that provided by symptom scores and may be useful to measure the extent of nasal obstruction.

#### 6.9.2.2. Olfactory tests

Olfaction can be measured objectively (Electro-Olfactogram and Olfactory Event-Related Potentials) or subjectively. Subjective tests can be divided into tests measuring odor threshold, odor discrimination and odor identification. For Europe, the Zurcher smell test and the "Sniffin' Sticks" test are the most commonly used. The American UPSIT is less useful because some of the smells used are uncommon in Europe [1412]. The Zurcher smell test is a simple indentification test with eight smell disks. Because of the small number of disks, simulators cannot be found. The "Sniffin' Sticks" smell test uses pen-like odor dispensing devices [1413]. There is a simpler test containing 12 sticks and a very extensive one using 112 sticks. The test is well validated in Europe [1414]. Since olfactory tests depend on different cultures and socities (e.g. food, fragances, education), a « Mediterranean » olfactory test (BAST-24) has also been developed [1415].

## 7. Management

Recent advances in our understanding of the mechanisms underlying inflammation of the upper and lower airways have led to improved therapeutic strategies for the management of allergic rhinitis. Practice guidelines incorporating these advances have been developed [1, 9, 21, 59, 1377]. In addition, a new classification of allergic rhinitis aids the establishment of an appropriate initial treatment strategy based on the duration and intensity of the patient's symptoms and life style limitations [1, 21, 1155].

Many patients suffering from allergic rhinitis do not recognize the process as such, do not consult a physician [1155, 1377] and only use OTC drugs. Others commonly seek self-treatment for the relief of symptoms and use unproven therapies. It is therefore very important to recognize the signs and symptoms suggestive of moderate/severe rhinitis or of a differential diagnosis of allergic rhinitis that may require urgent medical management [1154].

The management of allergic rhinitis encompasses patient education, pharmacotherapy and allergen-specific immunotherapy. Surgery may be used as an adjunctive intervention in a few highly-selected patients [1, 1154, 1193]. Environmental control is more controversial [1416].

"Evidence-based medicine" (EBM) is an increasingly important concept which has become a new paradigm in medicine [1417]. The increasing influence of EBM, due partly to the work of the Cochrane Collaboration, has led the way in setting new standards for preparing clinical recommendations [1418].

In the first ARIA document, it was recommended to propose a strategy combining the treatment of both upper and lower airway disease in terms of efficacy and safety [1].

The ARIA update is ongoing and some papers have been published [24-28]. It is also evidence-based, based on Shekelle et al [12]. However, most trials were carried out before the new classification of allergic rhinitis was made and are reported for seasonal and perennial rhinitis.

WHO, like many other organizations around the world, has recognized the need to use rigorous processes to ensure that health care recommendations are informed by the best available research evidence. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach [22] is currently suggested in the Guidelines for WHO Guidelines and is being used by an increasing number of other organizations internationally [1419]. Moreover, WHO is now proposing to use the AGREE instrument (Appraisal of Guideline Research & Evaluation) [1420] to meet the basic quality requirements for guidelines. The AGREE [1420] and GRADE approaches [1421-1423] were not used in this update but they are currently being used for a future Revision of ARIA.

## 7.1. Environmental control

## **Tertiary environmental control**

- The majority of single preventive measures of indoor allergen control fail to achieve clinically relevant improvement of asthma and rhinitis.
- Standard procedures for control of indoor allergens in tertiary prevention of rhinitis or asthma are not advisable for public health
- In patients allergic to furred animals who have symptoms on contact with the allergen, animal avoidance is recommended
- In low-income settings with a high load of pollutants (and allergens), a multifaceted intervention may be useful
- Total avoidance of occupational agents is recommended in sensitized subjects
- Occupational agent control may be useful when total avoidance is not possible

## 7.1.1. Levels of prevention

Three levels of prevention can be considered [1424].

- <u>Primary prevention</u> can be defined as the protection of health by personal and community wide effects, e.g. preserving good nutritional status, physical fitness and emotional well-being, immunizing against infectious diseases and making the environment safe. In the case of allergy, primary prevention is employed in situations where there is no evidence of allergic sensitization focused on populations at high risk of becoming sensitized [1425].
- <u>Secondary prevention</u> can be defined as the measures available to individuals and populations for the early detection and prompt and effective intervention to correct departures from good health. In the case of allergy, secondary prevention is employed in individuals who show evidence of sensitization to allergens but not yet any evidence of disease, at least focused on the upper respiratory tract.
- <u>Tertiary prevention</u> consists of the measures available to reduce or eliminate long-term impairments and disabilities, to minimize suffering caused by existing departures from good health and to promote the patient's adjustment to irremediable conditions. This extends the concept of prevention to the field of rehabilitation (WHO: Ottawa Charter for Health Promotion. Geneva: WHO, 1986). In the case of allergy, tertiary prevention will be preventive strategies for the management of established allergic rhinitis or asthma. Inevitably most published work comes from tertiary prophylaxis.

## 7.1.2. Inhalant-allergen avoidance

A range of inhalant allergens has been associated with allergic rhinitis, of which house dust mite is the most important and most investigated [1426, 1427]. Most allergen-avoidance studies have dealt with asthma symptoms and very few have studied rhinitis symptoms. Unfortunately, the majority of interventions have failed to achieve a sufficient reduction in allergen load to enhance any clinical improvement [1428].

A systematic review of dust mite allergen avoidance has shown that single measures are not effective in reduding symptoms of allergic rhinitis [1429]. A similar review was published for asthma [1430]. Only seven rhinitis trials satisfied the inclusion criteria, five of which were small and judged to be of poor quality. There was no significant beneficial effect from physical or chemical interventions. A large study investigated the effectiveness of mite allergen-impermeable encasings in mite-sensitized patients with perennial rhinitis and a positive nasal challenge test to mite extract [1410, 1431]. The active covers reduced the level of mattress Der p 1 to approximately 30% of the baseline level, whereas the placebo covers had no effect. However, there was no difference between groups in any of the outcome measures.

Two small studies have addressed the effects of pet allergen-control measures in rhinitis. In a randomized controlled trial of the efficacy of HEPA filters, nasal symptoms did not differ between active intervention and the placebo group [1432]. In another study, a set of allergen-control measures (washing all walls and floors, removing carpeting from bedrooms, applying tannic acid, washing bedding, replacing duvets and pillows, using impermeable covers, washing the cat every two weeks, etc.) resulted in a fall in the Fel d1 level to 6.8% of the baseline and in a significant improvement in nasal symptoms and nasal peak flow [1433].

Although the general consensus is that allergen avoidance should lead to an improvement of symptoms, there is very little evidence to support the use of single physical or chemical methods (Table 16). Recommendations proposing their use are at variance with the current evidence [24, 1416]. The use of mattress encasings or HEPA filters as a single intervention for house dust mite and pet allergy in adults with asthma or rhinitis cannot be advocated. Considering the management of allergy, current evidence suggests that interventions in children (either single or multifaceted) may be associated with at best a minor beneficial effect on asthma control. However, no conclusive evidence exists regarding rhinitis or eczema. There is a need for an adequately designed trial assessing the effects of a multifaceted intervention in this age group [1434]. However, multifaceted avoidance measures might be helpful for some highly selected patients after environmental councelling.

Patients allergic to furred pets may benefit from allergen avoidance at home, but they may encounter allergens in public transportation, schools and public places (see chapter 3.4.1.4). The real value of such avoidance needs further studies.

#### Table 16 - Effectiveness of Avoidance Measures in rhinitis and asthma for Certain Indoor Allergens

Adapted from [24]

| Measure                                                              | Evidence of effect<br>on allergen levels | Evidence of clinical benefit                             |
|----------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|
| House dust mites                                                     |                                          |                                                          |
| Encase bedding in impermeable covers                                 | Some                                     | None (adults): evidence A<br>Some (children): evidence B |
| Wash bedding on a hot cycle (55-60°C)                                | Some                                     | None: evidence A                                         |
| Replace carpets with hard flooring                                   | Some                                     | None: evidence A                                         |
| Acaricides and/or tannic acid                                        | Weak                                     | None: evidence A                                         |
| Minimize objects that accumulate dust                                | None                                     | None: evidence B                                         |
| Vacuum cleaners with integral HEPA filter and                        | Weak                                     | None: evidence B                                         |
| double-thickness bags                                                |                                          |                                                          |
| Remove, hot wash or freeze soft toys                                 | None                                     | None: evidence B                                         |
| Pets                                                                 |                                          |                                                          |
| Remove cat/dog from the home                                         | Weak                                     | None: evidence B                                         |
| Keep pet from main living areas/bedrooms                             | Weak                                     | None: evidence B                                         |
| HEPA-filter air cleaners                                             | Some                                     | None: evidence B                                         |
| Wash pet                                                             | Weak                                     | None: evidence B                                         |
| Replace carpets with hard flooring                                   | None                                     | None: evidence B                                         |
| Vacuum cleaners with integral HEPA filter and double-thickness bags( | None                                     | None: evidence B                                         |

| Set of allergen control measures  | Some | Some: evidence B |
|-----------------------------------|------|------------------|
| Evidence from Shekelle et al [12] |      |                  |

#### 7.1.3. Other measures

#### 7.1.3.1. Occupational agents

Many agents are involved in the development of rhinitis and asthma. It is recommended to completely avoid the occupational agent when a subject is sensitized and data are available for occupational asthma. However, the reduction in allergens may not be sufficient and studies in latex allergy are usually of a small size or are hampered by methodologic issues preventing a strong recommendation [137, 1435].

Early diagnosis of disease is needed for the tertiary prevention of occupational airway diseases since the earlier the worker is removed from the workplace, the more likely he/she will be cured [1436]. Moreover, after some years of exposure, intractable asthma may persist even after work cessation. Tertiary prevention usually requires complete avoidance from the risk. However, in some cases such as latex, the use of gloves containing very low levels of allergen (e.g. non-powdered gloves) may permit allergic health care workers to continue their work [1437]. The risk of an increased sensitization may result from continuous exposure.

A few reports indicate that air supply helmet respirators may be safely used for occasional work in areas of potential exposure [1438, 1439].

Tertiary prevention should not apply for irritant-induced OAD for which measures to reduce the likelihood of accidental inhalation episodes should be proposed [559].

#### 7.1.3.2. Indoor and outdoor air pollutants

Air pollutants are commonly associated with non-allergic rhinitis and may exacerbate patients with allergic rhinitis. On the other hand, tobacco smoke does not appear to aggravate the symptoms of allergic rhinitis.

Multifaceted allergen and irritant avoidance measures were found to inconstantly reduce asthma symptoms in a group of children living in poverty areas who were often inadequately treated [1440-1443]. No effect on rhinitis was reported. Applying allergen avoidance as a treatment for asthma among children living in poverty is difficult because of multiple sensitivities and problems applying the protocols in this environment. The current results demonstrate that home visiting positively influences the management of asthma among families living in poverty [1444]. No recommendation can be made, even for inner-city asthma.

The right to breathe healthy air in dwellings was recognized as a fundamental right by WHO in 2000. The THADE project (Towards Healthy Air in Dwellings in Europe) has been promoted by EFA with the support of the European Commission [1445]. Recommendations for an action-plan to prevent the adverse effects of poor air quality in dwellings include:

- Improve ventilation.
- Improve cleaning methods and housing hygiene.
- Avoid wall-to-wall carpeting.
- Moisture control to prevent the accumulation of mold.
- Control the sources of pollution, e.g. tobacco smoke and emissions from buildings and consumer products.

However, no existing study demonstrates that environmental control measures are beneficial due to methodological problems (Evidence B).

## 7.2. Drug treatment

#### Pharmacotherapy of allergic rhinitis and conjunctivitis

- Second-generation oral or intranasal H<sub>1</sub>-antihistamines are recommended for the treatment of allergic rhinitis and conjunctivitis in adults and children
- First-generation oral H<sub>1</sub>-antihistamines are not recommended when secondgeneration ones are available due to safety concerns
- Topical H<sub>1</sub>-antihistamines are recommended for the treatment of allergic rhinitis and conjunctivitis
- Intranasal glucocorticosteroids are recommended for the treatment of allergic rhinitis in adults and children. They are the most effective drugs for the treatment of allergic rhinitis
- Intra-muscular glucocorticosteroids and long-term use of oral glucocorticosteroids are not recommended due to safety concerns
- Topical cromones are recommended in the treatment of allergic rhinitis and conjunctivitis, but they are only modestly effective
- Montelukast is recommended in the treatment of seasonal allergic rhinitis in patients over 6 years of age
- Intranasal ipratropium is recommended for treatment of rhinorrhea associated with allergic rhinitis
- Intranasal decongestants may be used for a short period of time in patients with severe nasal obstruction
- Oral decongestants (and their combination with oral H<sub>1</sub>-antihistamines) may be used in the treatment of allergic rhinitis in adults, but side effects are common
- The treatment of allergic rhinitis should consider the severity and duration of the disease, the patient's preference, as well as the efficacy, availability and costs of medications
- A stepwise approach depending on the severity and duration of rhinitis is proposed
- A tailored approach is needed for each individual patient
- Not all patients with moderate/severe allergic rhinitis are controlled despite optimal pharmacotherapy

Pharmacologic treatment should take the following factors into account:

- Efficacy.
- Safety.
- Cost-effectiveness of medications.
- Patient's preference,
- Objective of the treatment [26, 1446-1448].
- Likely adherence to recommendations [1406].
- Severity and control of the disease.
- And the presence of co-morbidities.

Medications used for rhinitis are most commonly administered intranasally or orally (Table 4). The efficacy of medications may differ between patients. Medications have no long-lasting effect when stopped. Therefore, in persistent disease, maintenance treatment is required. Tachyphylaxis does not usually occur with prolonged treatment. Certain studies have compared the relative efficacy of these medications and have found that intranasal glucocorticosteroids are the most effective [1449].

Reviews of medications for the treatment of allergic rhinitis have recently been published and details on drugs are provided [26, 1450, 1451] (Table 17).

## Table 17 - Glossary of medications used in allergic rhinitis

Adapted from [1155]

| Name and             | Generic name                                                     | Mechanism of                                                 | Side effects                                                            | Comments                                                     |
|----------------------|------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|
| Also known as        | Generic name                                                     | action                                                       | Side circeis                                                            | Comments                                                     |
| Oral H <sub>1</sub>  | Second generation                                                | - blockage of H <sub>1</sub> receptor                        | New generation                                                          | New generartion oral H <sub>1</sub>                          |
| antihistamines       | Acrivastine [1452-1454]                                          |                                                              | - No sedation for most drugs                                            | antihistamines should be                                     |
|                      | Azelastine [1455]                                                | - some anti-allergic                                         | - No anti-cholinergic effect                                            | preferred for their favorable                                |
|                      | Cetirizine [1456-1460]                                           | activity                                                     | - No cardiotoxicity for                                                 | efficacy/safety ratio and                                    |
|                      | Desloratadine [1461-1464]                                        |                                                              | products                                                                | pharmacokinetics                                             |
|                      | Ebastine [1465-1467]<br>Fexofenadine [1468-1471]                 | <ul> <li>new generation drugs<br/>can</li> </ul>             | still available                                                         | Rapidly effective (less than 1                               |
|                      | Levocetirizine [1066, 1108, 1472]                                | be used OD                                                   | - Acrivastine has sedative                                              | hr)                                                          |
|                      | Loratadine [1473, 1474]                                          | oo abou ob                                                   | effects                                                                 | on nasal and ocular symptom                                  |
|                      | Mequitazine [1475, 1476]                                         | - no development of                                          | - Mequitazine has anti-                                                 | ~ 1                                                          |
|                      | Mizolastine [1477, 1478]                                         | tachyphylaxis                                                | cholinergic effect                                                      | Moderately effective on nasal                                |
|                      | Rupatadine [1479-1481]                                           |                                                              | - Oral azelastine may induce                                            | congestion                                                   |
|                      | First generation                                                 |                                                              | sedation and a bitter taste                                             | * Cardiotoxic drugs are no                                   |
|                      | Chlorphenyramine [1476, 1482]                                    |                                                              | Old generation                                                          | longer marketed in most                                      |
|                      | Clemastine [1483]                                                |                                                              | - Sedation is common                                                    | countries                                                    |
|                      | Dimethindene maleate [1484]                                      |                                                              | - And/or anti-cholinergic                                               |                                                              |
|                      | Hydroxyzine                                                      |                                                              | effect                                                                  |                                                              |
|                      | Ketotifen [1485]                                                 |                                                              | 0                                                                       |                                                              |
|                      | Oxatomine [1485, 1486]                                           |                                                              | × ·                                                                     |                                                              |
|                      | Cardiotoxic*                                                     | 4                                                            | <i>V</i>                                                                |                                                              |
|                      | Astemizole                                                       | $\sim$                                                       |                                                                         |                                                              |
|                      | Terfenadine                                                      |                                                              |                                                                         |                                                              |
| Local H <sub>1</sub> | Azelastine [1487-1490]                                           | - blockage of H1 receptor                                    |                                                                         | Rapidly effective (less than 3                               |
| antihistamines       | Levocabastine [1491-1494]                                        | - some anti-allergic                                         | - Azelastine: bitter taste                                              | min) on nasal or ocular                                      |
| (intranasal,         | Olopatadine [1495, 1496]                                         | activity for azelastine                                      |                                                                         | symptoms                                                     |
| intraocular)         |                                                                  |                                                              |                                                                         |                                                              |
| Intranasal           | Beclomethasone dipropionate                                      | - potently reduce nasal                                      | - Minor local side effects                                              | The most effective                                           |
| glucocorticosteroids | [1497-1499]<br>Budesonide [1500-1502]                            | inflammation                                                 | - Wide margin for systemic side effects                                 | pharmacologic treatment of allergic rhinitis                 |
|                      | Ciclesonide [1503, 1504]                                         | - reduce nasal                                               | - Growth concerns with BDP                                              |                                                              |
|                      | Flunisolide [1505, 1506]                                         | hyperreactivity                                              | only                                                                    | Effective on nasal congestion                                |
|                      | Fluticasone propionate [1099,                                    |                                                              | - In young children consider                                            | C                                                            |
|                      | 1325, 1507-1509]                                                 |                                                              | the combination of intranasal                                           | Effective on smell                                           |
|                      | Fluticasone furoate [1510, 1511]                                 |                                                              | and inhaled drugs                                                       | Effect at a second after 12 hashe                            |
|                      | Mometasone furoate [1512-1516]<br>Triamcinolone acetonide [1517- |                                                              |                                                                         | Effect observed after 12 hr bu<br>maximal effect after a few |
|                      | 1520]                                                            |                                                              |                                                                         | days                                                         |
| Leukotriene          | Montelukast [1100, 1521-1523]                                    | Block CystLT receptor                                        | Excellent tolerance                                                     | Effective on rhinitis and                                    |
| antagonists          | Pranlukast                                                       |                                                              |                                                                         | asthma                                                       |
| 0                    | Zafirlukast                                                      |                                                              |                                                                         |                                                              |
|                      |                                                                  |                                                              |                                                                         | Effective on all symptoms of rhinitis and on ocular          |
|                      |                                                                  |                                                              |                                                                         | symptoms                                                     |
| Local cromones       | Cromoglycate [1505, 1524]                                        | mechanism of action                                          | Minor local side effects                                                | Intraocular cromones are very                                |
| (intranasal,         | Nedocromil [1525-1527]                                           | poorly known                                                 |                                                                         | effective                                                    |
| intraocular)         | Naaga [1528]                                                     |                                                              |                                                                         | <b>.</b>                                                     |
| ·                    |                                                                  |                                                              |                                                                         | Intranasal cromones are less                                 |
|                      |                                                                  |                                                              |                                                                         | effective and their effect is short lasting                  |
|                      |                                                                  |                                                              |                                                                         | short lasting                                                |
|                      | $\rho$                                                           |                                                              |                                                                         | Overall excellent safety                                     |
| Oral decongestants   | Ephedrine                                                        | - sympatho-mimetic                                           | - Hypertension                                                          | Use oral decongestants with                                  |
|                      | Phenylephrine<br>Phenyl propagalamina                            | drugs                                                        | - Palpitations                                                          | caution in patients with heart                               |
| X                    | Phenyl- propanolamine<br>Pseudoephedrine                         | <ul> <li>relieve symptoms of<br/>nasal congestion</li> </ul> | - Restlessness<br>- Agitation                                           | disease                                                      |
| U_                   |                                                                  |                                                              | - Tremor                                                                | Oral H <sub>1</sub> -antihistamine-                          |
| ()                   | Oral H <sub>1</sub> -antihistamine-                              |                                                              | - Insomnia                                                              | decongestant combination                                     |
|                      | decongestant combinations                                        |                                                              | - Headache                                                              | products                                                     |
|                      | [1529-1534]                                                      |                                                              | - Dry mucous membranes                                                  | may be more effective than                                   |
|                      |                                                                  |                                                              | <ul> <li>Urinary retention</li> <li>Exacerbation of glaucoma</li> </ul> | either product alone<br>but side effects are combined        |
|                      |                                                                  |                                                              | or thyrotoxicosis                                                       | out side effects are combilled                               |
| Intranasal           | Oxymethazoline                                                   | - sympathomimetic drugs                                      | - Same side effects as oral                                             | Act more rapidly and more                                    |
| decongestants        | Xylomethazoline                                                  | - relieve symptoms of                                        | decongestants but less intens                                           | effectively than oral                                        |
| <b>0</b> · ···       | others                                                           | nasal congestion                                             |                                                                         | decongestants                                                |

|                                   |                                                                                                     |                                                                                                      | - Rhinitis medicamentosa is<br>a rebound phenomenon<br>occurring with prolonged use<br>(over 10 days)                                            | Limit duration of treatment to<br>less than 10 days to avoid<br>rhinitis medicamentosa                                                                                                          |
|-----------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oral / IM<br>glucocorticosteroids | Dexamethasone<br>Hydrocortisone<br>Methylpredisolone<br>Prednisolone<br>Prednisone<br>Triamcinolone | <ul> <li>potently reduce nasal<br/>inflammation</li> <li>reduce nasal<br/>hyperreactivity</li> </ul> | <ul> <li>Systemic side effects<br/>common<br/>in particular for IM drugs</li> <li>Depot injections may cause<br/>local tissue atrophy</li> </ul> | When possible, intranasal<br>glucocorticosteroids should<br>replace oral or IM drugs<br>However, a short course of<br>oral glucocorticosteroids may<br>be needed if moderate/severe<br>symptoms |
| Intranasal anti-<br>cholinergics  | Ipratropium [1535-1537]                                                                             | anti cholinergics<br>block almost exclusively<br>rhinorrhea                                          | - Minor local side effects<br>- Almost no systemic<br>antioholinergic activity                                                                   | Effective in allergic and non-allergic patients with rhinorrhea                                                                                                                                 |

\*: removed from most markets due to side effects

## 7.2.1. Routes of administration

Medications used for rhinitis are administered intranasally or orally in the majority of cases. Intranasal medications offer several advantages since high concentrations can be delivered directly into the nose, avoiding or minimizing systemic effects. However, problems are encountered with intranasal medications. Many patients with allergic rhinitis also have conjunctivitis and/or asthma, and medications need to be administered to various target organs. The intranasal distribution of medication is not optimal in many patients. In exceptional circumstances, glucocorticosteroids may be administered intramuscularly due to their unfavorable efficacy/safety ratio.

#### • Advantages of intranasal administration:

- High concentrations can be delivered directly into the target organ avoiding or minimizing systemic effects.
- Some of the drugs (e.g. cromones) used for the treatment of rhinitis should be administered only via the intranasal route as they are not adequately absorbed when given orally.
- Some drugs have systemic effects when administered orally (e.g. glucocorticosteroids and atropine derivatives).
- The onset of action of an intranasal drug is usually faster than that of an oral drug (e.g. vasoconstrictors and possibly  $H_1$ -antihistamines).

#### • Problems of intranasal administration:

- Some patients present some side effects in the form of crusting and bleeding.
- Many patients with allergic rhinitis present also with conjunctivitis and/or asthma. Intranasal glucocorticosteroids were shown to be effective in allergic conjunctivitis [1449].
- Other local side effects are medication-dependent. The prolonged use of an intranasal vasoconstrictor results in the risk of developing *rhinitis medicamentosa* [160]. The use of intranasal ipratropium bromide can cause an unpleasant feeling of nasal dryness and also produce blood-tinged mucus. Intranasal glucocorticosteroids can induce mild local side effects, in particular minimal nasal bleeding.
- Intranasal medication cannot be given when the nose or nostril is completely blocked.
- Patient compliance may be greater with oral than with topical drugs, especially if multiple target organs are to be treated. The education of the advantages of topical treatment would probably improve compliance.

## 7.2.2. Oral H<sub>1</sub>-antihistamines

 $H_1$ -blockers or  $H_1$ -antihistamines are medications that block histamine at the  $H_1$ -receptor level (neutral antagonists or inverse agonists) [1538]. Some also possess additional

anti-allergic properties [1539]. Over the past 20 years, pharmacologic research has produced compounds with minimal sedative effect and impairment: the so-called second-generation  $H_1$ -antihistamines, as opposed to the first-generation  $H_1$ -antihistamines [1539]. The term "third"-generation should be reserved for an  $H_1$ -antihistamine with novel properties [1540] and no drug has met these properties to date.

Oral H<sub>1</sub>-antihistamines are effective against symptoms mediated by histamine (rhinorrhea, sneezing, nasal itching and eye symptoms) but are less effective on nasal congestion [1229]. Their clinical effect in trials of perennial rhinitis lasting 4 weeks and over is usually small. Oral H<sub>1</sub>-antihistamines improve the patient's quality of life [1066, 1077, 1479]. One double-blind, placebo-controlled long-term trial found that levocetirizine was cost-effective in the treatment of persistent rhinitis [1066, 1115].

First-generation oral H<sub>1</sub>-antihistamines possess significant side effects due to their sedative and anti-cholinergic properties. Newer antihistamines induce no [1461, 1468, 1541-1543] or little sedation or impairment [1066, 1544]. They are not anti-cholinergic. Some antiallergic effects have been described [1545, 1546] but their exact clinical relevance is still unclear. Long-term treatment (years) with oral H<sub>1</sub>-antihistamines is safe. Some, but not all, oral H<sub>1</sub>-antihistamines undergo hepatic metabolism via the cytochrome P450 system and are prone to drug interactions [1547]. Although cardiotoxicity is not a class effect [1548], major concerns have existed about the arrhythmogenic action of terfenadine, astemizole and high doses of diphenhydramine which have rarely been associated with fatalities.

Oral H<sub>1</sub>-antihistamines have been shown to be safe and effective in children [1108].

Oral H<sub>1</sub>-antihistamines have also been approved for young children [1549]. Cetirizine, when compared with placebo, delayed or, in some cases, prevented the development of asthma in a subgroup of infants with atopic dermatitis sensitized to grass pollen and, to a lesser extent, house dust mite [1550]. Further studies are required to substantiate this finding and should focus specifically on sensitized groups.

Several properties should be met by oral H<sub>1</sub>-antihistamines (Table 18) [1551].

#### Table 18 - Requirements for oral H<sub>1</sub>-antihistamines

#### Several properties should be met by oral H1-antihistamines:

- Pharmacologic properties
  - Potent and selective H<sub>1</sub>-receptor blockage
  - Additive anti-allergic activities
  - □ No clinically relevant pharmacokinetic interference by foods, medications or intestinal transport proteins
  - □ No known interaction with cytochrome P4503A (CYP3A)
  - □ No known interaction with disease to avoid toxic reactions

#### Efficacy

- Effective in the treatment of intermittent and persistent rhinitis as defined in the ARIA document
- Effective for all nasal symptoms including nasal obstruction
- Improvement of eye symptoms
- If a claim for asthma is made:
  - Improvement of asthma symptoms (short-term studies)
  - Reduction of asthma exacerbations (long-term studies)
  - Improvement of the pulmonary function tests, even though FEV<sub>1</sub> and peak-flow rates are usually not altered in pollen-induced bronchial symptoms
- if a claim for a preventive effect is proposed, appropriate trials should be conducted
- Studies should be carried out on young children and elderly patients to assess efficacy

#### Side effects

- No sedation, no cognitive or psychomotor impairment
- No anti-cholinergic effects
- No weight gain
- No cardiac side effects
- Possible use in pregnancy and breast feeding
- Studies should be carried out on young children and elderly patients in order to assess safety.
- Prospective post-marketing safety analyses should be conducted
- <u>Pharmacodynamics</u>
  - Rapid onset of action
  - Long duration of action, at least persistence of clinical effects at the end of the 24-hour dosing period, so that the drug can be administered once a day
  - No likelihood of development of tolerance (tachyphylaxis).

Although first-generation oral  $H_1$ -antihistamines are effective, they cannot be recommended when second-generation drugs are available because of their sedative and anticholinergic effects [1552, 1553]. Moreover, it has been found that first-generation oral  $H_1$ antihistamines are not cost-effective because of the cost of associated sedation [1145]. Only safe second-generation antihistamines should be prescribed due to their favorable efficacy/safety ratio.

As a result of the over-the-counter (OTC) introduction of loratadine in the USA, health plans have attempted to determine the best policy to incorporate this change within their existing drug benefit structure for second-generation H<sub>1</sub>-antihistamines [1144]. These important changes need to be taken into consideration for optimal cost-effectiveness. The doubling of co-payments was associated with reductions in the use of 8 therapeutic classes. The largest decreases occurred for non-steroidal anti-inflammatory drugs (NSAIDs) (45%) and antihistamines (44%) [1554].

## 7.2.3. Topical H<sub>1</sub>-antihistamines

Intranasal H<sub>1</sub>-antihistamines are effective at the site of their administration in reducing itching, sneezing, runny nose and nasal congestion [1487, 1489, 1492]. Given ocularly, they are effective in allergic eye symptoms [1555, 1556]. They can be effective within 20 minutes of administration. Topical H<sub>1</sub>-antihistamines require twice-a-day dosing. One formulation of olopatadine is OD for the treatment of allergic conjunctivitis. In general, topical H<sub>1</sub>-antihistamines are well tolerated. Use at high dosages is only approved in some countries. Azelastine high dose may be more effective than oral H<sub>1</sub>-antihistamines [1489, 1557], but it has some side effects such as mild somnolence or bad taste in some patients. Intranasal glucocorticosteroids are significantly more effective than oral or topical H<sub>1</sub>-antihistamines for the treatment of allergic rhinitis and, in particular, for nasal congestion. Intra-nasal H<sub>1</sub>-antihistamines do not appear to improve ocular symptoms [1558].

#### 7.2.4 Intranasal glucocorticosteroids

Intranasal glucocorticosteroids are the most efficacious medication available for the treatment of allergic and non-allergic rhinitis [1449, 1558]. The rationale for using intranasal glucocorticosteroids in the treatment of allergic rhinitis is that high drug concentrations can be achieved at receptor sites in the nasal mucosa with a minimal risk of systemic adverse effects. These medications are effective in improving all symptoms of allergic rhinitis as well as ocular symptoms [1559-1561]. If nasal congestion is present or symptoms are frequent, an

intranasal glucocorticosteroid is the most appropriate first-line treatment as it is more effective than any other treatment [1562, 1563].

Due to their mechanism of action, efficacy appears after 7-8 hours of dosing [1564], but maximum efficacy may require up to 2 weeks. However, the onset of action of intranasal glucocorticosteroids may be shorter than previously thought, and some patients benefit within the first 2 hours [1325]. Fluticasone propionate aqueous nasal spray improves the nasal symptoms of seasonal allergic rhinitis when used as needed (PRN) [1565, 1566]

Intranasal glucocorticosteroids are well tolerated, and adverse effects are few in number, mild in severity and have the same incidence as placebo [1567-1572]. However, there are differences in safety between molecules, those with low bioavailability being the best tolerated [1573, 1574]. The current intranasal preparations are well tolerated and can be used on a long-term basis without atrophy of the mucosa [814, 1508] Evidence shows that the long-term use of intranasal glucocorticosteroids is free of the concerns associated with the long-term use of oral glucocorticosteroids. Growth has been a concern in children treated with inhaled glucocorticosteroids. The rate of growth was slightly reduced in children regularly treated with intranasal beclomethasone over one year [1575]. However, no growth retardation has been observed in one-year follow-up studies of children treated with fluticasone mometasone furoate [1577-1579]. propionate [1576] or Moreover. а pharmacokinetic/pharmacodynamic model of the relationship between systemic corticosteroid exposure and growth velocity has been proposed and may be useful for the development of future local glucocorticosteroids [1578, 1579].

Several properties should be met by intranasal glucocorticosteroids (Table 19) [1551].

#### Table 19 - Requirements for intranasal glucocorticosteroids

Several properties should be met by intranasal glucocorticosteroids

- Pharmacologic properties
  - Potent action on transcription factors
  - Non-genomic effects
  - First-pass hepatic metabolism
- <u>Efficacy</u>
  - Effective in the treatment of intermittent and persistent rhinitis as defined in the ARIA document
  - □ Effective for all nasal symptoms
  - □ Improvement of eye symptoms
  - □ If a claim for asthma is proposed:
    - improvement of asthma symptoms (short-term studies)
    - reduction of asthma exacerbations (long-term studies)
    - an improvement of the pulmonary function tests, even though FEV1 and
  - peak-flow rates are usually not altered in pollen-induced bronchial symptoms If a claim for nasal polyposis or sinusitis is proposed, the adequate appropriate trials
  - should be conducted
  - □ If a claim for a preventive effect is proposed, appropriate trials should be conducted
- Side effects
  - Minimal local side effects
  - □ No HPA axis effects, especially in children
  - □ And in association with the inhaled (intra-bronchial) form
  - □ No long-term effect on growth in children
  - Possible use in pregnancy

#### Pharmacodynamics

- Assessment of the onset of action
- Long duration of action, at least 24 hrs, ability to be administered once a day
- If a claim for prn use is proposed, additional appropriate trials should be conducted

The most effective drugs, e.g. intranasal glucocorticosteroids, are cost-effective when compared to less effective treatments, e.g. intranasal cromoglycate [1142]. Comparisons between two intranasal glucocorticosteroids are difficult because drug pricing differs between countries [1143].

Intranasal glucocorticosteroids are also available OTC in many countries [1580] but this raises some concerns [1581].

#### 7.2.5. Anti-leukotrienes

Several pivotal studies have been carried out on seasonal allergic rhinitis comparing Montelukast and placebo. In some studies, the combination of Montelukast-Loratadine was also used [1521, 1523, 1582-1584]. It was consistently found that Montelukast was more effective than placebo for all nasal and ocular symptoms and that there was no significant difference between Montelukast and Loratadine, even for nasal obstruction. Moreover, in contradistinction with the first study [1585], the combination Montelukast-Loratadine did not provide any additive beneficial effect over the two drugs alone. The combined Montelukast and Cetirizine treatment, when started 6 weeks before the pollen season, was effective in preventing allergic rhinitis symptoms and reduced allergic inflammation in nasal mucosa during natural allergen exposure [1586]. Montelukast is equally effective in patients exposed to low and high pollen counts [1523]. In one study of perennial rhinitis, Montelukast was found to be superior to placebo [1522], but in another study its effects were not superior to placebo and were similar to cetirizine after one month of treatment [1587].

In studies carried out on patients with seasonal allergic rhinitis and asthma, Montelukast was found to improve nasal and bronchial symptoms [1588, 1589]. The use of β-agonists (puffs/day) was also reduced with Montelukast.

Leukotriene receptor antagonists are more effective than placebo, equivalent to oral H<sub>1</sub>-antihistamines and inferior to intranasal glucocorticosteroids for treating seasonal allergic rhinitis [1590-1593].

# 7.2.6. Combination therapy with intranasal glucocorticosteroids

Combination between drugs has been tested, but insufficient data are available to make a recommendation concerning the combined use of oral  $H_1$ -antihistamines and intranasal glucocorticosteroids [1099, 1594, 1595]. The combination of oral  $H_1$ -antihistamines and leukotriene receptor antagonists does not increase the efficacy of any single drug and is less effective than intranasal corticosteroids [1594, 1596, 1597]. The combination of ipratropium with beclomethasone dipropionate is more effective than either active agent alone in the treatment of rhinorrhea [1598].

## 7.2,7. Cromones

Cromoglycate and nedocromil are available as intranasal or ocular preparations. They are modestly effective in nasal symptoms [1524, 1527, 1599] and effective in ocular symptoms [1600, 1601]. They are particularly safe [1].

#### 7.2.8. Decongestants

In the treatment of nasal obstruction, in both allergic and non-allergic rhinitis, intranasal decongestants are effective in the short term [1602, 1603]. However, they do not improve nasal itching, sneezing or rhinorrhea. Very few and small size randomized clinical trials (RCTs) have been carried out in allergic rhinitis [1604, 1605]. Moreover, there are some studies assessing nasal airflow resistance [1606]. A prolonged use (>10 days) of intranasal vasoconstrictors may lead to tachyphylaxis, a rebound swelling of the nasal mucosa and to "drug-induced rhinitis" (*rhinitis medicamentosa*) [159, 160, 162, 1607, 1608].

Oral vasoconstrictors such as ephedrine, phenylephrine, phenylpropanolamine (banned in some countries including the USA) and especially pseudoephedrine are the most commonly used oral decongestants [1609-1611]. Systemic side effects are not rare with oral drugs and include irritability, dizziness, headache, tremor and insomnia as well as tachycardia and hypertension [1]. Patients with glaucoma or hyperthyroidism and elderly men with urinary retention due to prostate enlargement are also at risk when using oral sympathomimetic decongestants. Pseudoephedrine was recently banned for Olympic athletes [27].

In many countries, the combination of oral H<sub>1</sub>-antihistamines and decongestants represents a large market share [1612-1615]. The objectives of these combinations are to improve nasal obstruction which shows little change using oral H1-antihistamines. Since pseudoephedrine is used, the combination bears all side effects of the vasoconstrictor, and food intake may alter the pharmacokinetics [1616]. There are many OTC drugs combining sedative oral antihistamines with decongestants which are not recommended because of side effects of both components, and in particular sedation.

The combination of ibuprofen and pseudoephedrine was found to be effective in reducing symptoms of allergic rhinitis [1617].

#### 7.2.9. Anti-cholinergic agents

Double-blind, placebo-controlled studies have shown that ipratropium bromide is effective in controlling watery nasal discharge, but that it does not affect sneezing or nasal obstruction in perennial allergic and non-allergic (vasomotor) rhinitis [1618-1620]. Topical side effects, due to the anticholinergic action, are uncommon and obviously dose-dependent in their severity [1].

## 7.2.10. Systemic glucocorticosteroids

In rare cases, patients with severe symptoms who do not respond to other drugs or those who are intolerant to intranasal drugs may need to be treated with systemic glucocorticosteroids (e.g. prednisolone, starting dose 20-40 mg/day) for a short period of time [1552]. There is a tack of comparative studies on the preferred dose, the route of administration and the dose-response relationship.

Glucocorticosteroids can also be given orally or as a depot-injection (e.g. methylprednisolone 40-80 mg/injection) [1621].

The long-term use (a few weeks) of oral drugs and any use of intramuscular glucocorticosteroids bear the well-recognized risks of systemic glucocorticosteroids. Intramuscular drugs should be avoided [1622].

## 7.2,11. Other medications

The non-steroidal anti-inflammatory drug Ketorolac is modestly effective when used in ophthalmic preparations [1623].

## 7.3. Allergen-specific immunotherapy: Therapeutic vaccines for allergic diseases Specific immunotherapy

## • Allergen-specific immunotherapy has traditionally been administered by the subcutaneous route but local routes are now available

- Specific immunotherapy needs a precise diagnosis of IgE-mediated allergy
- Subcutaneous immunotherapy is effective in adults and children for pollen and mite allergy, but it is burdened by the risks of side effects. These reactions may be life-threatening
- Sublingual immunotherapy is recommended for the treatment of pollen allergy in adults
- Sublingual immunotherapy may be used for the treatment of patients with mite allergy
- Intranasal immunotherapy may be used for the treatment of patients with pollen allergy
- Allergen-specific immunotherapy may alter the natural course of allergic diseases
- Subcutaneous immunotherapy appears to be effective several years after its cessation
- Immunotherapy appears to reduce the development of new sensitizations
- Administered to patients with rhinitis, immunotherapy appears to reduce the development of asthma (secondary prevention of asthma)

Allergen-specific immunotherapy is the practice of administering gradually increasing quantities of an allergen extract to an allergic subject to ameliorate the symptoms associated with the subsequent exposure to the causative allergen. However, there are registered sublingual immunotherapy products which do not require up-dosing. Allergen immunotherapy was introduced to treat "pollinosis" or allergic rhinitis by Noon and Freeman in 1911 [1624]. There is good evidence that immunotherapy using inhalant allergens is clinically effective to treat allergic rhinitis and asthma [1193]. It induces clinical and immunologic tolerance, has long-term efficacy and may prevent the progression of allergic disease. Allergen-specific immunotherapy also improves the quality of life of allergic patients [1625, 1626].

Several guidelines and indications for specific immunotherapy with inhalant allergens have been published over the past years by WHO [1193, 1627], the European Academy of Allergology and Clinical Immunology (EAACI) [1625, 1628-1630], the International Consensus Report on Asthma [1631], the Global Strategy for Asthma Management and Prevention [1140], the International Consensus Report on Rhinitis [9], the British Society for Allergy and Clinical Immunology [1632], the American Academy of Allergy, Asthma and Immunology (AAAAI), the American College of Allergy, Asthma and Immunology (ACAAI) [1633], The World Allergy Organization (WAO) [1634], the British Thoracic Society (BTS) and ARIA. These reports provide guidelines for a better understanding of the use of allergen-specific immunotherapy. An update of the ARIA guidelines has recently been proposed [28].

## 7.3.1. Allergen standardization

The quality of the allergen vaccine is critical for both diagnosis and treatment. Where possible, standardized vaccines of known potency and shelf life should be used [1635]. The most common vaccines used in clinical allergy practice are now available as standardized products [1635] or are pending standardization. It is likely that in the near future recombinant

allergens will provide standards for allergen analysis and, in consequence, new diagnostic and therapeutic products will be developped [28, 1625].

Allergen vaccines are labeled in units of biological potency based on skin tests. Methods differ in Europe [1636] and the USA [1637]. Each manufacturer defines specific units and concentrations and a whole range of not inter-related names for specific units currently appear on the labels of marketed products [1638].

- IU (international unit).
- HEP (histamine equivalent prick) [1636].
- AU (allergy unit).
- BAU (biological allergy unit) [1639].
- BU (biologic unit).
- IR (index of reactivity)
- TU (therapeutic units) etc.

However, even when the same methodology is used (e.g. Nordic Guidelines [1636], extracts from different manufacturers labeled with the same units may not be identical in potency, due to differences in the sensitivity of the selected patient population, the relatively small number of patients tested and the different methodologies employed [1625].

The measurement of major allergens for standardization is now a realistic and desirable goal which should be encouraged [1193, 1640]. It is recommended that in the future allergen manufacturers should state the content of representative major allergens in their products in mass units ( $\mu$ g/ml), although comparison between different manufacturers' labeling may not be possible due to differences in assays and methodologies for measurement of the major allergens [28, 1625].

In the European Pharmacopeia, allergen preparations for specific immunotherapy may be [1635]:

- Unmodified vaccines.
- Vaccines modified chemically.
- Vaccines modified by adsorption onto different carriers (so-called depot-vaccines).
- Modified and depot vaccines developed to make specific immunotherapy more effective and reduce the risks of side effects.
- Recombinant allergens.

Allergen vaccines should be distributed, provided their potency, composition and stability have been documented as either:

- Vaccines from a single source material.
- Mixtures of related, cross-reacting allergen vaccines such as grass-pollen vaccines, deciduous-tree pollen vaccines, related ragweed pollen vaccines and related mite vaccines
- Mixtures of other allergen vaccines provided that stability data [1641] and data on clinical efficacy are available. Where mixtures are marketed, the relative amounts of each component of the mixture should be indicated.

#### 7.3.2. Subcutaneous immunotherapy

## 7.3.2.1. Efficacy

The clinical efficacy of SCIT is well established for both rhinitis and asthma, and meta-analyses of its efficacy on asthma [1642, 1643] and rhinitis [1644] are available.

Subcutaneous immunotherapy raises contrasting efficacy and safety issues as does immunotherapy dosing. Low-dose specific immunotherapy is ineffective [1645-1647] and high doses of allergen vaccines may induce a high and unacceptable rate of systemic reactions [1647]. Thus, optimal doses using vaccines labeled either in biological units or in mass of major allergens have been proposed [1193]. The optimal dose is defined as the dose of

allergen vaccine inducing a clinically relevant effect in the majority of patients without causing unacceptable side effects [1648]. Doses of 5 to 20  $\mu$ g of the major allergen per injection are optimal doses for most allergen vaccines (for review see [1, 1193, 1649]).

Since the publication of the ARIA workshop report, several studies have confirmed these findings. Clinical efficacy (reduction of symptoms and/or need for medications) has been confirmed with grass [1102, 1104, 1650-1655], birch [1650, 1651, 1656-1659], ragweed [1660], Russian thistle [1661], *Parietaria* pollen [1662, 1663], mites [1664-1669] and cat [1670]. It should be noted that three of the studies [1104, 1660, 1670] clearly demonstrated that the clinical effect is dose-dependent. One study showed that recombinant grass pollen vaccines were effective on rhinitis symptoms [1671]. Quality of life was improved in patients receiving specific immunotherapy [1104, 1653]. In asthma and rhinitis allergen vaccines are effective for birch and Betulaceae, grass, Cupressaceae, cypress, olive, *Parietaria*, ragweed pollens, cat, house dust mites, *Alternaria* [1625].

The duration of immunotherapy is usually of three years to show long-term efficacy after its cessation [1672-1674].

New forms of ultra-rapid subcutaneous immunotherapy using Monophosphoryl lipid A (MPL) have recently been tested and appear to be promising [1675, 1676].

CpG-adjuved vaccines are also being tested but more data are needed to define their efficacy and safety [1677].

#### 7.3.2.2. Safety

Subcutaneous specific immunotherapy is burdened with a risk of inducing systemic side effects. When treating rhinitis patients, the risk of serious anaphylactic reactions is rather limited compared to treating asthma patients [1178, 1193, 1649, 1678]. In many of the recently published studies, systemic side effects were still noticed using standardized extracts [1104], allergoids [1653] or recombinant allergens [1671]. Doses of 5 to 20  $\mu$ g of the major allergens are optimal doses for most allergen vaccines [1193] but some patients may present systemic side effects with these doses [1104].

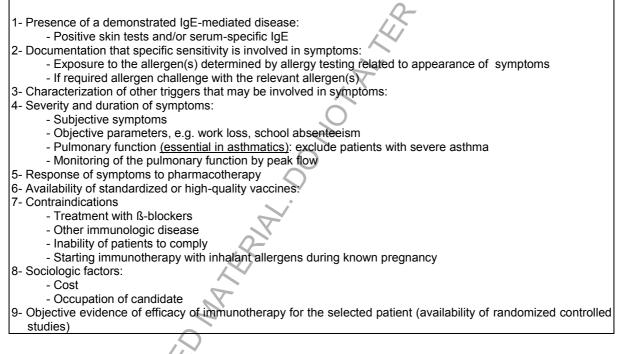
More post-marketting surveillance studies need to be provided.

Systemic reactions are categorized into immediate systemic reactions (occurring within 30 min) and late systemic reactions (onset > 30 min after injection). A new grading system based on the rate of onset and severity is recommended in Table 20.

## Table 20 – Classification of systemic reactions induced by immunotherapy

From [1625]

| 0   | No symptoms or non-immunotherapy related symptoms                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                             |
| I.  | Mild systemic reations                                                                                                                                      |
|     | Symptoms: Localized urticaria, rhinitis or mild asthma (PF < 20% decrease from baseline)                                                                    |
| Ш   | Moderate systemic reactions                                                                                                                                 |
|     | Symptoms: Slow onset (> 15 min) of generalized urticaria and/or moderate asthma (PF <                                                                       |
|     | 40% decrease from baseline)                                                                                                                                 |
| III | Severe (non-life-threatening) systemic reactions                                                                                                            |
|     | <i>Symptoms</i> :Rapid onset (< 15 min) of generalized urticaria, angioedema, or severe asthma (PF > 40% decrease from baseline)                            |
| IV  | Anaphylactic shock                                                                                                                                          |
|     | <i>Symptoms</i> : Immediate evoked reaction of itching, flushing, erythema, generalized urticaria, stridor (angioedema), immediate asthma, hypotension etc. |


Oral  $H_1$ -antihistamine pre-treatment during the induction phase has shown to reduce the frequency and severity of systemic side effects [1679] (Category of evidence B, Shekelle et al [12]).

#### 7.3.2.3. Indications

Double-blind, placebo-controlled studies have confirmed the efficacy of subcutaneous immunotherapy. Clinical efficacy does not necessarily mean clinical indication, especially since controlled trials of immunotherapy are optimally designed and may not always be applicable to daily medical practice. Safe and effective pharmacologic treatment is also available for the treatment of allergic diseases. Thus, before starting immunotherapy, it is essential to appreciate the respective value of pharmacotherapy and immunotherapy (Table 21).

#### Table 21 - Considerations for initiating immunotherapy;

from the WHO Position Paper on Allergen Vaccines [1193] and ARIA [1649]



The indications for subcutaneous immunotherapy are similar to those published in 1998 [1193] and 2001 [1649] (Table 22). Indications and contraindications for allergenspecific subcutaneous immunotherapy are the same for children over the age of 5 years as for adults [28, 1625].

#### Table 22 – Indications for subcutaneous immunotherapy

- · Patients with symptoms induced predominantly by allergen exposure
- · Patients with a prolonged season or with symptoms induced by succeeding pollen seasons
- Patients with rhinitis and symptoms from the lower airways during peak allergen exposure
- Patients in whom antihistamines and moderate dose topical glucocorticoids insufficiently control symptoms
- Patients who do not want to be on constant or long-term pharmacotherapy
- Patients in whom pharmacotherapy induces undesirable side effects

The practical aspects of subcutaneous immunotherapy have recently been published [1625]. Physicians, nurses and health care persons must be trained and regularly updated in subcutaneous allergen-specific immunotherapy including the observation and rescue treatment of systemic anaphylactic reactions. Adrenaline should be readily available.

Economic evaluation of specific immunotherapy versus symptomatic treatment of allergic rhinitis was modelized in Germany and France [1146, 1680] and it was found to be cost-effective due to the long-term effects of immunotherapy.

#### 7.3.2.4. Natural course of allergic disease

Subcutaneous immunotherapy alters the natural course of allergic diseases. Long-term efficacy of specific immunotherapy persists after it has been stopped [1672, 1673, 1681-1686]. Subcutaneous immunotherapy in monosensitized children prevents the development of new sensitizations [1687] and may prevent the development of asthma in patients with rhinitis [1688, 1689]. The category of evidence for long-term efficacy and preventive capacity is B [1625].

## 7.3.3. Sublingual immunotherapy (SLIT)

Sublingual immunotherapy (SLIT) is currently marketed in several European countries and has gained wide acceptance [1690-1692]. It is also available in other countries (e.g. Argentina, Brazil, Gulf States, South Africa). Most extracts are standardized either biologically or immunologically and for most preparations the microgram content of major allergen(s) is also available. It can be administered using drops or tablets.

#### 7.3.3.1. Efficacy

Sublingual immunotherapy has been controversial for many years and this form of therapy has gained little acceptance in the US. It was proposed to be ineffective [1693-1695], of concern [1696] or possibly effective but with many unanswered questions [1697]. Wilson et al. [1698] published a Cochrane Collaboration meta-analysis of SLIT in rhinitis and proposed that it was safe and effective. The Cochrane meta-analysis [1699] was followed by several studies which accorded with the results of the review [1103, 1700-1711]. Moreover, pivotal trials have been carried out and the results on over 600 patients showed convincingly that in grass pollen allergy, SLIT using tablets is safe and effective [1103, 1712]. Quality of life was improved in patients receiving sublingual immunotherapy [1713]. Sublingual immunotherapy is effective for rhinitis and asthma due to birch, cypress, grass, olive, *Parietaria pollens*, and house dust mites.

In children, a recent large study did not find any effect, but this study may have been negative due to the relatively low dose of allergen administered and the efficacy of such a schedule has not been confirmed in adults [1714]. Another study in mite allergy was carried out in mild-moderate asthmatic children optimally controlled by pharmacologic treatment and HDM avoidance. In this study, SLIT did not provide additional benefit, despite a significant reduction in allergic response to HDM [1715]. The meta-analysis in children which showed that the sublingual delivery of an allergen vaccination constituted a safe and effective alternative to the injectable route in reducing allergy respiratory symptoms and drug intake [1716] should be revised in the light of these two trials.

Twenty-five studies involving 1,706 patients were included in a meta-analysis on SLIT in asthma [1717]. Immunotherapy was seen to significantly reduce asthma severity when parameter compositions were all analyzed by categorical outcomes.

The doses of allergen used in the different studies ranged from three to 375 times the cumulative dose of subcutaneous immunotherapy and no definite conclusion was possible

[1718]. However, large studies with tablets assessed the dose response of SLIT and it was found that a low dose is ineffective and that a daily dose of around 25  $\mu$ g of Phl p 5 is required to achieve efficacy. Higher doses are not more effective.

#### 7.3.3.2. Safety

The safety of sublingual immunotherapy has been demonstrated in adults and children by several papers [1719-1722], Phase I trials [1723] and by post-marketing surveillance data [1718, 1724].

Local side effects have been described in clinical trials. These include itching and swelling of the lips and under the tongue. These effects are more common in studies involving high dosage. In general, these effects are well tolerated, requiring no medication or dosage modifications, and often resolve with continued treatment.

In a few clinical trials, systemic reactions such as urticaria and asthma have been observed, all of them self-limiting. Reactions may be dose- and allergen-dependent [1698]. Two recent clinical cases on anaphylactic reactions following SLIT have been published. However, one case was on latex immunotherapy and the other on an ill-defined multi-allergen vaccine [1725, 1726].

Because SLIT is given to the patient at home, the following precautions should be taken [1625]:

- The patient (for children, the parents) should be given clear, simple written instructions about what to do in the event of an adverse reaction.
- Allergen tablets and drops should be kept in a secure place out of reach of children.

#### 7.3.3.3. Indications

The indications for SLIT are given in (Table 23).

#### Table 23 – Indications for sublingual immunotherapy

High-dose sublingual-swallow specific immunotherapy may be indicated in the following cases:

- carefully selected patients with rhinitis, conjunctivitis and/or asthma caused by pollen and mite allergy,
- patients insufficiently controlled by conventional pharmacotherapy,
- patients who have presented with systemic reactions during injection-specific immunotherapy,
- patients showing poor compliance with or refusing injections.

# 7.3.3.4. Sublingual immunotherapy versus subcutaneous immunotherapy

Few studies have compared the two routes of administration. One compared 3 groups of patients (sublingual, subcutaneous and placebo) [1727] and another used an open design [1728]. They do not provide sufficient information due to insufficient study design. A double-blind, double-dummy study [1729] investigated patients with birch pollen rhinoconjunctivitis. A significant difference between the two active groups and the placebo group in terms of symptom load and drug intake was found. However, the numbers of subjects studied were inadequate to detect a difference between the two active groups, if one existed. More studies with a greater number of patients are needed to evaluate the differences between both routes [1625].

## 7.3.3.5. Natural course of allergic disease

Sublingual immunotherapy may also impact the natural course of the disease [1730, 1731], but more data are needed for confirmation.

## 7.4. Anti-IgE

The recombinant, humanized, monoclonal anti-IgE antibody (Omalizumab) forms complexes with free IgE, blocking its interaction with mast cells and basophils and lowering free IgE levels in the circulation [1732]. In a large pivotal trial, Omalizumab decreased serum-free IgE levels and provided clinical benefit in a dose-dependent fashion in patients with seasonal allergic rhinitis [768, 1733]. In adults and adolescents, Omalizumab was found to decrease all nasal symptoms and to improve RQLQ in patients with rhinitis induced by birch and ragweed pollens as well as in those with sensitization to outdoor allergens [1105, 1734]. In patients with asthma and rhinitis, Omalizumab improved nasal and bronchial symptoms and reduced unscheduled visits due to asthma [770]. The clinical benefit of treatment with Omalizumab is associated with an anti-inflammatory effect on cellular markers in blood and nasal tissue [1735, 1736] as well as with a reduction in FccRI expression and function [1737]. Omalizumab inhibits allergen challenge-induced nasal response [1738]. It also rapidly decreases nasal allergic response and FccRI on basophils [1739]. The relative efficiency of this treatment compared to H<sub>1</sub>-antihistamines and intranasal glucocorticosteroids needs to be established.

Omalizumab was shown in clinical trials and post-marketing surveillance studies to induce rare (0.1% of treated patients) but potentially severe anaphylactic or anaphylactoid reactions [1740, 1741] leading to a change in the labeling. It is recommended that omalizumab should only be administered to patients in a healthcare setting under direct medical supervision by providers for 2 hours following the first three injections and to monitor surveillance for 30 minutes after other injections.

Cost-effectiveness of anti-IgE has been appreciated for its indication in severe asthma [1742, 1743] but not for rhinitis. Omalizumab is approved for the treatment of adults and adolescents with uncontrolled severe (European Union [EU]) or moderate-to-severe (USA) allergic (IgE-mediated) asthma. In the EU, the indication has recently been extended to include children (6–<12 years) with severe allergic (IgE-mediated) asthma.

## 7.4.1. Subcutaneous immunotherapy combined with anti-IgE

Omalizumab pre-treatment decreases acute reactions after rush immunotherapy for ragweed-induced seasonal allergic rhinitis [1744]. The co-seasonal administration of omalizumab after pre-seasonal specific immunotherapy decreases ocular and nasal symptom scores and rescue medication use in grass-pollen allergic children [1745-1747]. This combination might prove useful for the treatment of allergic rhinitis, particularly for polysensitized patients.

## 7.5. Complementary and alternative medicine

## Complementary and alternative medicine

- Many patients who use complementary and alternative medicine appear to be satisfied
- Evidence-based recommendations are difficult to propose for most complementary and alternative medicine interventions due to methodological problems
- There is no evidence for the efficacy of most complementary and alternative medicines on allergic rhinitis and asthma
- Safety of phytotherapy raises concerns

Complementary/alternative medicines are extensively used in the treatment of allergic rhinitis and asthma [266], but evidence-based recommendations are difficult to propose due to

methodological problems in many trials (e.g. not randomized, not controlled, not blinded and with no quantitative measurement) [25, 1748-1751]. CAM is widely practised and many patients who use this treatment appear to be satisfied. From a scientific viewpoint, there is no definitive or convincing proof of efficacy for most CAMs in rhinitis or asthma.

Considering the randomized, controlled trials, there is no clear evidence of the efficacy of acupuncture in rhinitis and asthma.

Some positive results have been described in rhinitis using homeopathy in good quality trials, but an equal number of negative studies counterbalance the positive ones [25]. It is therefore impossible to provide evidence-based recommendations for the use of homeopathy in the treatment of allergic rhinitis, and further randomized controlled trials are needed.

Some herbal remedies have proved effective in the treatment of rhinitis [1076, 1752, 1753], but the studies are too few to make any firm recommendations. There are also safety and drug interaction concerns associated with these remedies. In fact, herbal remedies are not usually sufficiently standardized and can also contain harmful substances [1754-1756], such as the ephedrine-containing remedies that have been banned in the USA [1757]. A mandatory pre-requisite for evaluating herbal remedies/mixtures is that the method of preparation, doses, components and active ingredients should be clearly defined, according to the WHO guidelines [1758, 1759].

The therapeutic efficacy of CAM treatments is not supported by currently available evidence [25]. More data from randomized, double-blind, placebo-controlled trials are required. In addition, CAMs may not be devoid of side effects and some of these may interact with other medications [1754, 1756].

#### 7.6. Other treatments

Saline douche is a simple and inexpensive treatment which was shown to bear some efficacy [228, 1760-1762].

Physico-chemical approaches have been proposed. Rhinophototherapy is effective [1763], but more data using simpler equipment are needed. Nasal filters [1764] or pollen blocker creams [1765] during natural exposure to ragweed and grass pollen can reduce nasal symptoms. An inert cellulose powder has been on sale in the UK since 1994 as a remedy for hay fever and was found to reduce symptoms of pollen rhinitis [1766]. In Japan it is generic to wear a facemask and eyeglasses to prevent pollen inhalation. These masks are effective only if there is no strong wind or outside of the peak pollen season [1767].

Probiotics may influence symptoms of allergic diseases, but more data on large randomized trials are needed [1768, 1769].

## 7.7. Surgical treatment of rhinitis

As surgery cannot contribute to the treatment of allergic disease itself, it may only be used in certain precise conditions such as turbinate hypertrophy, cartilaginous or bony obstruction of nasal airways or secondary and independent sinus disease. In patients who suffer from perennial allergic or non-allergic rhinitis for many years, a severe drug-resistant hypertrophy of the inferior turbinates may develop, which leads to constant nasal obstruction and watery secretion due to an increase in glandular structures. Consequently, the surgical reduction of the inferior turbinate body and mucosal surface, which should always be limited to the necessary, reduces nasal obstruction and secretion [1770]. Nowadays, endoscopically controlled minimal-invasive techniques for the sinuses, but also for the turbinates, have replaced former procedures in most countries, and a range of new tools and instruments have been created to allow for more precise and less traumatic surgery. Laser surgery [1771] may also be used. Vidian neurectomy is not indicated for rhinitis because of side effects [1772]

and the availability of medical treatment [1773]. The indication for nasal and sinus surgery should always be based on a lack of effect of adequate drug treatment and the functional and clinical relevance of the anatomical variation or disease.

Indications for a surgical intervention are:

- drug-resistant inferior turbinate hypertrophy,
- anatomical variations of the septum with functional relevance,
- anatomical variations of the bony pyramid with functional/aesthetic relevance,
- secondary or independently-developing chronic sinusitis [1774, 1775],
- different forms of nasal unilateral polyposis (choanal polyp, solitary polyp, allergic fungal sinusitis) or therapy-resistant bilateral nasal polyposis [1776, 1777],
- fungal sinus disease (mycetoma, invasive forms) or other pathologies unrelated to allergy (cerebro-spinal fluid leak, inverted papilloma, benign and malignant tumours, Wegener's disease, etc.).

# 7.8. Practical guidelines for the treatment of allergic rhinitis and co-morbidities

## 7.8.1. Availability and affordability of the treatment

The guidelines are made on the presumption that the suggested treatments are available and affordable to the patient. WHO has published a list of essential drugs [1778]. It is important that all the drugs which are of importance in the treatment of rhinitis should be available worldwide. Moreover, even when patients can receive and afford treatment there is a considerable under-treatment [1779].

The guidelines do not take into account the costs of the treatment. They are made on the presumption that all treatments are readily available and financially affordable to the patient (on health insurance). However, most patients may need to buy drugs, and costeffectiveness is therefore of importance.

# 7.8.2. Recommendations for the management of allergic rhinitis

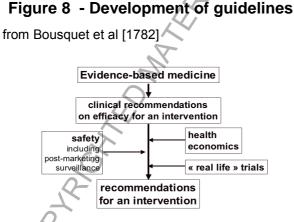
Depending on the classification of allergic rhinitis (seasonal and perennial or intermittent and persistent), several algorithm-guided therapeutic schemes can be proposed [1, 9, 21, 59, 1377]. However, most guidelines are in general agreement [1552] (Table 24) and usually follow a progressive management algorithm [1780]. The IPAG (International Primary Care Airways Group) and IPCRG (International Primary Care Respiratory Group) [21] guidelines follow the 2001 ARIA guidelines and are not presented in the Table. It has been shown that in seasonal allergic rhinitis, guideline-guided treatment is more effective than free treatment choice by general practitioners [1406].

# Table 24 – Therapeutic schemes of guideline-guided treatment in allergic rhinitis

adapted from [1552]

| Source of guideline | International | Joint Task Force on | EAACI consensus      | ARIA (2001) | ARIA (2007) |
|---------------------|---------------|---------------------|----------------------|-------------|-------------|
| _                   | Consensus on  | Practice Parameters | on allergic rhinitis |             |             |
|                     | Rhinitis      | for Rhinitis        |                      |             |             |

| Type of statement                                                           | Expert panel                                                                                                                                              | Expert panel                                                                                                                                                  | Consensus                                                                                                                                                                                        | Expert panel<br>evidence-based                                                                                                                                                     | Expert panel<br>evidence-based<br>(GRADE)                                                                                                                                         |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diagnostic testing for<br>IgE antibody (skin test<br>or serum-specific IgE) | Indicated if<br>symptoms persist, or<br>QOL affected, or<br>SIT considered                                                                                | Indicated to confirm<br>allergy casuse and to<br>identify allergens to<br>avoid, or for SIT                                                                   | No comment                                                                                                                                                                                       | Indicated to confirm<br>allergy cause                                                                                                                                              | Indicated if<br>symptoms persist<br>and/or<br>moderate/severe, or<br>QOL affected, or<br>SIT considered                                                                           |
| Allergen avoidance                                                          | Indicated for all patients                                                                                                                                | Indicated for all patients                                                                                                                                    | Indicated for all patients                                                                                                                                                                       | Indicated (evidence<br>D)                                                                                                                                                          | Usually not<br>indicated as a public<br>health measure. May<br>be helpful in some<br>highly selected<br>patients                                                                  |
| First-generation oral<br>H <sub>1</sub> -blocker                            | Not recommended                                                                                                                                           | Not recommended                                                                                                                                               | Not recommended                                                                                                                                                                                  | Not recommended<br>because of<br>unfavorable<br>efficacy/safety ratio                                                                                                              | Not recommended<br>because of<br>unfavorable<br>efficacy/safety ratio                                                                                                             |
| Second-generation<br>oral H <sub>1</sub> -blocker                           | Mainstay treatment<br>for mild-moderate<br>disease and in<br>combination with<br>INCS for severe<br>disease                                               | First-line therapy and<br>for prophylactic use,<br>but not effective alone<br>for nasal congestion                                                            | First-line therapy,<br>but not effective<br>alone for nasal<br>congestion                                                                                                                        | First-line therapy<br>except for<br>moderate/severe<br>persistent rhinitis,<br>not effective alone<br>for nasal congestion                                                         | First-line therapy<br>except for<br>moderate/severe<br>persistent rhinitis (or<br>added to INCS)                                                                                  |
| Topical H <sub>1</sub> -blocker<br>(intra-nasal or topical<br>conjunctival) | Same as oral                                                                                                                                              | Same as oral                                                                                                                                                  | Same as oral                                                                                                                                                                                     | Same as oral ,<br>rapidly effective                                                                                                                                                | Same as oral ,<br>rapidly effective                                                                                                                                               |
| Intranasal<br>corticosteroid<br>(ICNS)                                      | Primary agents for<br>moderate/severe<br>diseases and for<br>nasal obstruction,<br>but relief is less<br>rapid than H1-<br>blockers                       | Especially for<br>moderate/severe<br>disease                                                                                                                  | First-line treatment<br>for moderate/severe<br>or persistent disease,<br>despite slow onset of<br>action (12 hr),<br>effective for nasal<br>congestion,<br>particularly in<br>perennial rhinitis | First-line treatment<br>for moderate/ severe<br>disease, in particular<br>in persistent rhinitis,<br>despite slow onset<br>of action (12 hr),<br>effective for nasal<br>congestion | First-line treatment<br>for moderate/severe<br>disease, in particular<br>in persistent rhinitis,<br>despite slow onset<br>of action (12 hr),<br>effective for nasal<br>congestion |
| Anti-leukotriene                                                            | No comment                                                                                                                                                | No comment                                                                                                                                                    | No comment                                                                                                                                                                                       | One study only.<br>Indication difficult<br>to delineate                                                                                                                            | In rhinitis, efficacy<br>similar to oral H <sub>1</sub> -<br>blockers. Effective<br>on asthma and<br>rhinitis.                                                                    |
| Cromone (intra-nasal<br>or topical<br>conjunctival)                         | Safe and effective,<br>but less effective<br>than other<br>medications                                                                                    | Safe and effective in<br>some patients,<br>especially if begun<br>early in season                                                                             | Safe and effective,<br>but less effective<br>than other<br>medications                                                                                                                           | Safe and effective,<br>but less effective<br>than other<br>medications                                                                                                             | Safe and modestly<br>effective, and less<br>effective than other<br>medications                                                                                                   |
| Decongestant (oral)                                                         | Indicated in<br>combination with<br>oral H <sub>1</sub> -<br>antihistamines                                                                               | Indicated in<br>combination with oral<br>H <sub>1</sub> -antihistamine to<br>reduce congestion                                                                |                                                                                                                                                                                                  | Indicated in<br>combination with<br>oral H <sub>1</sub> -<br>antihistamine to<br>reduce congestion.<br>Safety issues                                                               | Indicated in<br>combination with<br>oral H <sub>1</sub> -<br>antihistamine to<br>reduce congestion.<br>Safety issues                                                              |
| Depot corticosteroid                                                        | Not recommended                                                                                                                                           | Not recommended<br>because of side<br>effects                                                                                                                 | Not recommended<br>because of side<br>effects                                                                                                                                                    | Not recommended<br>because of side<br>effects                                                                                                                                      | Not recommended<br>because of side<br>effects and lack of<br>evidence on efficacy                                                                                                 |
| Intranasal<br>anticholinergic                                               | Indicated to reduce<br>rhinorrhea not<br>controlled by other<br>medications                                                                               | Indicated to reduce<br>rhinorrhea but not<br>effective in other<br>symptoms                                                                                   | Indicated to reduce<br>rhinorrhea not<br>controlled by other<br>medications                                                                                                                      | Indicated to reduce<br>rhinorrhea not<br>controlled by other<br>medications                                                                                                        | Indicated to reduce<br>rhinorrhea not<br>controlled by other<br>medications                                                                                                       |
| Subcutaneous<br>immunotherapy                                               | Indicated if response<br>to primary therapy is<br>poor, if compliance<br>with pharmaco-<br>therapy is low, or if<br>complications<br>(asthma) are present | Indicated if symptoms<br>are severe or<br>protracted or if other<br>treatment fails; to<br>prevent progression or<br>development of<br>complicating illnesses | Indicated if only 1 or<br>2 relevant allergens<br>and<br>pharmacotherapy<br>and avoidance<br>therapy are<br>insufficient; risk of<br>systemic effects                                            | Indicated if only 1<br>or 2 relevant<br>allergens and<br>pharmacotherapy<br>and avoidance<br>therapy are<br>insufficient; risk of<br>systemic effects                              | Indicated if only 1<br>or 2 relevant<br>allergens and<br>pharmacotherapy<br>and avoidance<br>therapy are<br>insufficient; risk of<br>systemic effects                             |
| Sublingual<br>immunotherapy                                                 | No comment                                                                                                                                                | No comment                                                                                                                                                    | Indicated in the same<br>conditions as<br>subcutaneous<br>immunotherapy and<br>for seasonal allergic<br>rhinitis; may be safer                                                                   | Indicated in the<br>same conditions as<br>subcutaneous<br>immunotherapy with<br>some reservations; is<br>safer than                                                                | Indicated in the<br>same conditions as<br>subcutaneous<br>immunotherapy; is<br>safer than<br>subcutaneous                                                                         |


|                        |                        |                         | than subcutaneous | subcutaneous         | immunotherapy         |
|------------------------|------------------------|-------------------------|-------------------|----------------------|-----------------------|
|                        |                        |                         | immunotherapy     | immunotherapy        |                       |
| Referral to allergy or | Indicated if response  | Indicated if response   | No comment        | Indicated if         | Indicated if response |
| other specialist       | to environmental       | to drugs is poor; if    |                   | symptoms persist for | to drugs is poor or   |
|                        | control is poor, if >2 | immunotherapy is        |                   | >3 months            | if symptoms persist   |
|                        | courses a year of      | required, if            |                   |                      | for >3 months         |
|                        | oral                   | complications of        |                   |                      |                       |
|                        | glucocorticosteroids   | rhinitis are chronic or |                   |                      |                       |
|                        | are required, if       | recurrent (e.g.         |                   |                      |                       |
|                        | complications of       | sinusitis), if systemic |                   |                      | *<br>*                |
|                        | rhinitis are chronic   | glucocorticosteroids    |                   | $\sim$               |                       |
|                        | or recurrent (e.g.     | are needed to control   |                   |                      |                       |
|                        | sinusitis, Eustachian  | symptoms, or if         |                   |                      |                       |
|                        | tube dysfunction) or   | symptoms persist for    |                   | $\sim$               |                       |
|                        | if immunotherapy is    | >3 months               |                   | $\sim$               |                       |
|                        | indicated              |                         |                   |                      |                       |
| Pharmacist assessment  | No comment             | No comment              | No comment        | A pharmacist pocket  | Pharmacists are part  |
|                        |                        |                         |                   | guide has been       | of the management     |
|                        |                        |                         |                   | produced             | of rhinitis as OTC    |
| Patient's views        |                        |                         |                   |                      | drugs are common      |
|                        | No comment             | No comment              | No comment        |                      | worldwide             |
|                        |                        |                         |                   | Developed with       |                       |
|                        |                        |                         | $\sim$            | Patients'            | Developed with        |
|                        |                        |                         |                   | associations         | patient's             |
|                        |                        |                         |                   |                      | associations          |

However, pharmacologic treatment based on guidelines [9] is not effective in all patients [1406]. Around one third of patients with moderate/severe symptoms are uncontrolled despite optimal pharmacologic treatment and some still present severe symptoms, particularly conjunctivitis and nasal obstruction.

## 7.8.3. ARIA guidelines

### 7.8.3.1. Methodology for the updated recommendations

Great progress has been made in obtaining reliable evidence on the beneficial effects of interventions, but developments in the identification, interpretation, and reporting of harmful effects is more challenging [1781]. RCTs are insufficient to assess the side effects of treatments and post-marketing surveillance is needed. There is an urgent need to get better evidence about side effects (risks) [1421] (Figure 8).



The recommendations follow criteria which may differ from country to country and in Europe and at WHO another the Shekelle method was commonly used [12] (Table 25).

#### 99

#### Table 25 – Shekelle guide for level of evidence

From Shekelle et al [12].

| Leve | l of evidence                                                                           |
|------|-----------------------------------------------------------------------------------------|
| la   | meta-analysis of randomised controlled trials (RCT)                                     |
| Ib   | at least one RCT                                                                        |
| lla  | at least one controlled study without randomisation                                     |
| Ilb  | at least one other type of study                                                        |
| III  | non-experimental descriptive studies                                                    |
| IV   | expert committee reports or opinions or clinical experience of respected authorities    |
|      | igth of recommendation                                                                  |
| A    | category I evidence                                                                     |
| B    | category II evidence or extrapolated recommendation from category I evidence            |
| C    | category III evidence or extrapolated recommendation from category I or II evidence     |
| D    | category IV evidence or extrapolated recommendation from category I, II or III evidence |

However, a number of approaches have been used to grade levels of evidence and the strength of recommendations [1423]. The large number of systems for measuring the quality of evidence and recommendations is confusing and all currently used approaches for grading levels of evidence and the strength of recommendations have important shortcomings [1783]. The "Guidelines for WHO guidelines" recommend using a specific, uniform grading system [1784]. The GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach is one of the recommended systems [1423] and is being used increasingly by a number of organizations. The GRADE working group first published the results of its work [22]. It classifies recommendations in two levels – strong and weak and quality evidence into 4 levels – high, moderate, low and very low [1423].

It appears that recommendations only based on efficacy are insufficient to classify clinical practice guidelines and panels should consider several factors (Table 26). When benefits of an intervention clearly overweight its risks and burden, or clearly do not, strong recommendations are warranted.

## Table 26 – Factors panels should consider in deciding on a strong or weak recommendation

From Guyatt et al [1422]

- Methodological quality of the evidence supporting estimates of likely benefits, and likely risk, inconvenience and costs
- Importance of the outcome that treatment prevents
- Magnitude of treatment effect
- Risks associated with therapy
- Burdens of therapy
- Risks of target event
- Costs

The 1994 International Consensus for Rhinitis guidelines [9] followed a stepwise approach in the treatment of allergic and non-allergic rhinitis, because this seemed to be the most practical approach for the general practitioner and for the specialist.

In 1999, the EAACI proposed new guidelines [59] and, unlike the 1994 guidelines [9], not only the mild and moderate cases were considered but also the severe ones.

In the ARIA guidelines, the suggestions were made by a panel of experts and were based on an extensive review of the literature available up to December 1999 [1]. Papers for

the review were extracted from Medline using PubMed and Embase. A consensus was reached on all of the material presented in this position paper. The panel recognized that the suggestions it put forward were valid for the majority of patients within a particular classification but that individual patient responses to a particular treatment may differ from the suggested therapy. It was assumed that a correct diagnosis was achieved before treatment. The statements of evidence for the development of these guidelines has followed WHO rules and are based on Shekelle et al. [12]. The statements of evidence for the different treatment options of allergic rhinitis have been examined by the ARIA panel (Table 27).

The ARIA update is ongoing and some papers have been published [24-28] It is also evidence-based. However, most trials were carried out before the new classification of allergic rhinitis has been made and are reported for seasonal and perennial rhinitis.

#### Table 27 - Level of evidence of different interventions in allergic rhinitis

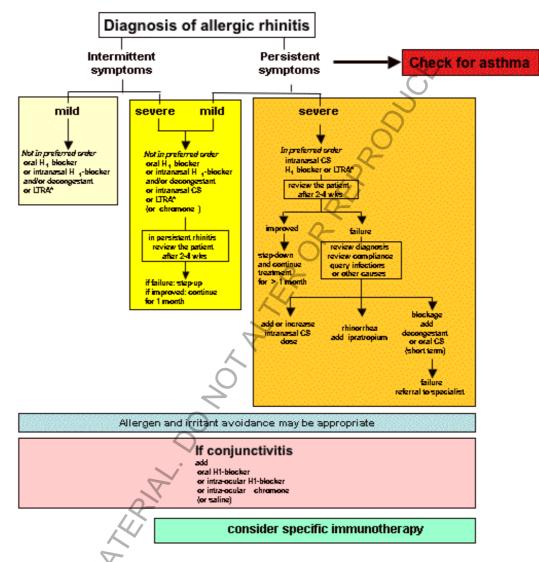
The level of evidence was made according to Shekelle et al [12] Adapted from [24-28]

| intervention                         | Seasonal rhinitis |               | Perennial rhinitis<br>(mostly applies for<br>studies ≤ 4 weeks)* |               | Persistent<br>rhinitis <sup>\$</sup> |
|--------------------------------------|-------------------|---------------|------------------------------------------------------------------|---------------|--------------------------------------|
| Intervention                         |                   |               |                                                                  |               | minus                                |
|                                      | adult             | children      |                                                                  | children      |                                      |
| H <sub>1</sub> -anti-histamine       |                   |               | X                                                                |               |                                      |
| Oral                                 | А                 | А             | A                                                                | A             | А                                    |
| Intranasal                           | А                 | А             | A                                                                | А             | No data                              |
| Intraocular                          | A                 | А             | B                                                                | В             | No data                              |
| Glucocorticosteroid                  |                   |               | /                                                                |               |                                      |
| Intranasal                           | A                 | А             | A                                                                | Α             | No data                              |
| Oral                                 | A                 | В             | В                                                                | В             | No data                              |
| IM                                   | A                 | В             | В                                                                | В             | No data                              |
| Cromones                             |                   |               |                                                                  |               |                                      |
| Intranasal                           | A                 | A             | А                                                                | В             | No data                              |
| Intraocular                          | A                 | A.            | В                                                                | В             | No data                              |
| Naaga (topical)                      | В                 | C             | С                                                                | С             | No data                              |
| Anti-leukotriene                     | А                 | A over 6 yrs  |                                                                  |               | No data                              |
| Decongestant                         |                   |               |                                                                  |               |                                      |
| Intranasal                           | С                 | С             | С                                                                | С             | No data                              |
| Oral                                 | A                 | X             |                                                                  |               | No data                              |
| Oral + H <sub>1</sub> -antihistamine | A                 | В             | В                                                                | В             | No data                              |
| Anti-cholinergic                     |                   |               | А                                                                | А             | No data                              |
| Homeopathy                           | D                 | D             | D                                                                | D             | No data                              |
| Acupuncture                          | D                 | D             | D                                                                | D             | No data                              |
| Phytotherapy                         | В                 | D             | D                                                                | D             | No data                              |
| Other CAM                            | D                 | D             | D                                                                | D             | No data                              |
| Specific immunotherapy: rhinoconju   | unctivitis        |               |                                                                  |               |                                      |
| Subcutaneous                         | A                 | А             | А                                                                | А             | No data                              |
| Sublingual**                         | A                 | А             | А                                                                | А             | No data                              |
| Intranasal**                         | A                 |               |                                                                  |               | No data                              |
| Specific immunotherapy: asthma       |                   |               |                                                                  |               |                                      |
| Subcutaneous                         | A                 | A             | А                                                                | A             |                                      |
| Sublingual**                         | А                 | A             | А                                                                | A             |                                      |
| Anti-IgE                             | A                 | A over 12 yrs | А                                                                | A over 12 yrs | No data                              |
| Allergen avoidance                   |                   |               |                                                                  |               |                                      |
| House dust mites                     | D                 | D             | D                                                                | D             | No data                              |
| Other indoor allergens               | D                 | D             | D                                                                | D             | No data                              |
| Total avoidance of                   |                   |               | A (for                                                           |               | No data                              |
| occupational agent                   |                   |               | asthma)                                                          |               |                                      |
| Partial avoidance of latex           |                   |               | В                                                                |               | No data                              |

\*: Very few studies longer than 4 weeks

<sup>\$</sup>: Applies to treatments only carried out in studies with persistent rhinitis

\*\*: Apply to high dose treatment


#### 7.8.3.2. Rationale for updated recommendations

Since the ARIA workshop report, several studies have been undertaken. They can be summarized as follows:

- Seasonal and perennial rhinitis is not synonymous with intermittent and persistent rhinitis. The ARIA subdivision was found to be closer to the patients than the previous classification. Thus, the categorization of intermittent and persistent rhinitis should be maintained.
- However, it is likely, but not demonstrated, that nasal inflammation is persisting longer in patients with persistent rhinitis than in those with IAR.
- Allergen avoidance for tertiary prevention of allergic rhinitis has not been found to be effective for most indoor allergens. It cannot be proposed as a general measure. However, it is reasonable to avoid direct exposure to pets in allergic subjects. In some patients with a very high allergen load in the home and after environmental councelling, a multifaceted intervention against house dust mites might be proposed.
- Only one study was published in patients with persistent thinitis and it was found that levocetirizine reduces symptoms and improves the quality of life of patients with moderate/severe disease.
- Sublingual immunotherapy is now fully validated, at least in adults.

However, treatment should be tailored according to the severity of the disease, comorbidities, treatment availability and affordability and patients' preference. Thus, a list of options is indicated in the updated ARIA recommendations. Moreover, labeling variations for medications exist between countries and should be taken into consideration before prescribing.

8 Reptice of the second second



#### Figure 9 - Rhinitis management

7.8.3.4. Management of rhinitis in developing countries

In developing countries, the management of rhinitis is based on medication affordability and availability [1785] and on cultural differences [1786]. The rationale for treatment choice in developing countries is based upon:

- Level of efficacy.
- Low drug cost affordable for the majority of patients.
- Inclusion in the WHO essential list of drugs: only chlorpheniramine and beclomethasone are listed [1778]. It is hoped that new drugs will be available on this list when they become affordable for patients in developing countries.
- Most chronic diseases are treated for their acute symptoms and no long-term plan is proposed.

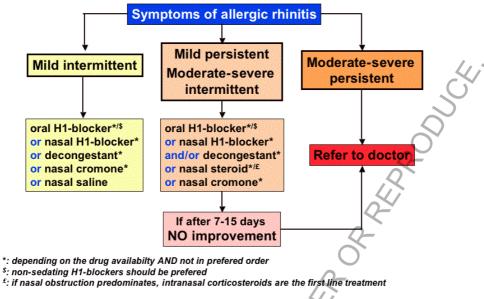
In the first ARIA document, it was proposed that specific immunotherapy was contraindicated in low-income countries because the resources allocated to specific immunotherapy might be better allocated to a wider use of generic drugs such as topical glucocorticosteroids [1]. In the ARIA update new recommendations have been proposed [28]. Moreover, the diagnosis of allergy in most developing countries is difficult because allergens in the environment are ill-defined and there is a lack of trained specialists, as a result of which appropriate testing cannot be done. In this case specific immunotherapy should not be performed. The diagnosis of allergy should be determined by trained health professionals when allergens are well-defined. Taking these considerations into account, no general rule can be applied to all countries. In countries where there are trained allergists, where relevant local allergens have been identified and high-quality vaccines are available, specific immunotherapy can be performed. If specific immunotherapy is used, its cost-effectiveness at individual level should be evaluated depending on the health care priorities, health system and resources of each country. In developing countries, it is recommended that physicians working in specific immunotherapy receive regular updating in the field.

A stepwise medical treatment was proposed in the ARIA workshop report [1]:

- Mild IAR: oral H<sub>1</sub>-antihistamines.
- Moderate/severe IAR: Intranasal glucocorticosteroids (equivalent beclomethasone 300-400µg daily) should be prescribed. If needed, after one week of treatment, oral H<sub>1</sub>-antihistamines and/or oral glucocorticosteroids should be added.
- Mild persistent rhinitis: Treatment with oral H<sub>1</sub>-antihistamines or a low dose of intranasal corticosteroid (equivalent beclomethasone 100-200 μg) should be sufficient.
- Moderate/severe persistent rhinitis: A high dose of intranasal glucocorticosteroids (equivalent beclomethasone 300-400 μg) should be prescribed. If symptoms are severe, add oral H<sub>1</sub>-antihistamines and/or oral glucocorticosteroids at the beginning of the treatment.

Asthma management for developing countries was developed in a guide proposed by the International Union against Tuberculosis and Lung Disease (The Union) in 1996 and was revised in 2006 [1787]. The affordability of inhaled steroids is usually low in developing countries. If it is affordable for the patient to treat the two manifestations of the disease, it is recommended to add the treatment of allergic rhinitis to the asthma management plan.

#### 7.8.4. Management of allergic rhinitis in the pharmacy


Worldwide, pharmacists receive sophisticated clinical training. Given the well-known and well-publicized recognition of iatrogenic disease, pharmacists' skills represent an enormous potential resource in maximizing the benefits and minimizing the adverse events associated with pharmacotherapy [1788]. Pharmaceutical care includes the prevention, treatment or cure of a disease [1789]. Interest and expectation that pharmacists provide broader "pharmaceutical care" services has therefore increased [1790]. Pharmaceutical care for the patient is likely to be optimal when there is collaboration between pharmacists, patients and other health care professionals, specifically physicians [85]. However, there are major differences between countries.

As trusted healthcare professionals in the community, pharmacists are well placed to identify the symptoms of allergic rhinitis and to recommend appropriate treatment by:

- Understanding the effect of treatment on rhinitis and co-morbidities.
- Determining whether management in the pharmacy is appropriate (Figure 1010).
- Initiating an appropriate treatment and monitoring plan.
- Proposing appropriate preventive measures.
- And assessing co-morbidities.

Figure 10 - Management of allergic rhinitis in the pharmacy

From [1154]



## 7.8.5. Specific considerations

#### 7.8.5.1. Pediatric aspects

Allergic rhinitis is part of the "allergic march" during childhood [1426, 1791] but IAR is unusual before two years of age. Allergic rhinitis is most prevalent during school-age years.

The principles of treatment for children are the same as for adults, but special care has to be taken to avoid the side effects typical in this age group (see Chapter 11.5). A Cochrane meta-analysis was recently published concerning the efficacy of intra-nasal glucocorticosteroids in children with IAR and PER but papers analyzed may not be totally adequate [1792].

## 7.8.5.2. Pregnancy

Nasal physiological changes exist during pregnancy [1793]. Pregnancy rhinitis is a very common condition. Defined as "nasal congestion present during pregnancy without other signs of respiratory tract infection, and with no known allergic cause, disappearing completely within 2 weeks after delivery," it strikes one in five pregnant women and can start in almost any gestational week [171].

Rhinitis is often a problem during pregnancy since nasal obstruction may be aggravated by pregnancy itself [168]. Caution must be taken when administering any medication during pregnancy, as most medications cross the placenta [1794, 1795]. For most drugs, limited studies have been performed only on small groups without long-term analysis [1796, 1797]. Moreover, there are differences in regulations between countries and it is advisable to conform to the country's regulations.

Nasal glucocorticosteroids are not very effective in non-allergic pregnant women [1798] but could be used when indicated for other sorts of rhinitis. Nasal decongestants provide good temporary relief, leading to their over-use by pregnant rhinitics [171].

#### 7.8.5.3. Elderly people

With ageing, various physiological changes occur in the connective tissue and vasculature of the nose which may predispose or contribute to chronic rhinitis [1799]. Moreover, there are unpredicted pharmacokinetic changes in the elderly, but there is no clear

study for drugs used in allergic rhinitis. Some drugs may induce specific side effects in elderly patients [1800, 1801].

In the elderly, intranasal glucocorticosteroids, at the recommended dose, have not been associated with an increased risk of fractures [1802]. The cardiovascular and urinary risks of nasal or oral decongestants should be considered.

Many elderly patients receive numerous treatments for several co-morbidities. Some of them such as ß-blockers and ACE-inhibitors may induce or aggravate symptoms associated with allergic diseases.

#### 7.8.5.4. Sport and exercise

In recommendations of the ARIA update for athletes, the issue is addressed of adapting diagnosis and management to criteria set by the International Olympic Committee (IOC) and regulations adopted by the World Anti-Doping Agency [27]. The recommendations are given in Table 28.

#### Table 28 – List of permitted and prohibited anti-allergic treatment

from the World anti-doping Agency (WADA) [1803], International Olympic Committee (<u>http://www.olympic.org/uk/games/torino/atue/index\_uk.asp</u>) and Bonini et al [27]

| Treatment                                                    | WADA rules                                                                  | IOC rules                                                                                                                                                                                                 | Notes                                                                                                                                                            |
|--------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anti-histamines                                              | Permitted                                                                   | Permitted                                                                                                                                                                                                 | Second-generation H <sub>1</sub> -anti-<br>histamines should be<br>preferred to avoid<br>somnolence                                                              |
| Anti-leukotrienes                                            | Permitted                                                                   | Permitted                                                                                                                                                                                                 |                                                                                                                                                                  |
| Oral glucocorticosteroids                                    | Prohibited in competition,<br>require therapeutic use<br>exemption approval | Prohibited in competition, require<br>therapeutic use exemption<br>approval                                                                                                                               |                                                                                                                                                                  |
| Topical<br>glucocorticosteroids                              | Require an abbreviated therapeutic use exemption approval                   | Need notification                                                                                                                                                                                         |                                                                                                                                                                  |
| Oral ß <sub>2</sub> -agonists                                | Prohibited                                                                  | Prohibited                                                                                                                                                                                                |                                                                                                                                                                  |
| Inhaled salbutamol,<br>terbutaline,formoterol,<br>salmeterol | Require an abbreviated<br>therapeutic use<br>exemption approval             | Documentation of bronchial<br>hyperresponsiveness, reversibility<br>to inhaled bronchodilators, positive<br>exercise test, eucapnic<br>hyperventilation test or cold air<br>challenge must be documented* | A concentration of<br>salbutamol > 1 µg/ml is<br>considered an Adverse<br>Analytical Finding unless<br>proven as due to therapeutic<br>use of inhaled salbutamol |
| Ephedrine,<br>methylephedrine,<br>pseudoephedrine            | Prohibited in competition,<br>pseudoephedrine<br>permitted                  | Prohibited in competition,<br>pseudoephedrine permitted                                                                                                                                                   | Ephedrine and<br>methylephedrine<br>concentration in urine<br>>10µg/ml represents an<br>Adverse Analytical Finding                                               |
| Immunotherapy                                                | Permitted                                                                   | Permitted                                                                                                                                                                                                 | Immunotherapy should not<br>be performed before or after<br>physical exercise                                                                                    |
| Inhaled or nasal<br>ipratropium bromide                      | Permitted                                                                   | Permitted                                                                                                                                                                                                 |                                                                                                                                                                  |
| Disodium cromoglycate                                        | Permitted                                                                   | Permitted                                                                                                                                                                                                 |                                                                                                                                                                  |

A notification for the use of inhaled glucocorticosteroids and an application for the use of any of the following inhaled  $\beta_{2^-}$  agonists must be made to the Medical Committee of the International Olympic Commission at the latest two weeks before the Olympic Games. For the last Olympic Games in Torino a web site was created where an on-line application could be made (<u>http://www.olympic.org/uk/games/torino/atue/index\_uk.asp</u>). To be allowed to use inhaled salbutamol, terbutaline, salmeterol or formoterol at least one of the following requirements had to be met:

- Either a positive bronchodilator test with an increase in FEV₁ ≥ 12 %, positive exercise test, a positive eucapnic hyperventilation test or cold air challenge test with a reduction in FEV₁ of ≥ 10%
- Or a positive methacholine bronchial challenge test with a PC<sub>20</sub>≤ 4mg/ml or a PD<sub>20</sub>≤ 2 µmol in steroid naïve athletes (without inhaled steroids for the last three months) or in athletes using inhaled steroids a PC<sub>20</sub>≤ 6.6 mg/ml or a PD<sub>20</sub> ≤ 13.6 µmol.

The WADA prohibited list of drugs in sports is usually updated and changed every year, and also the IOC regulation may be changed before the next Olympic Games. The physician treating athletes should remain updated regarding these regulations.

## 7.9. Education

Education of the patient and/or the patient's care giver about the management of rhinitis is essential. Such education is likely to maximize compliance and optimize treatment outcomes [1804]. Patient information, as well as the communication and partnership of the treating healthcare professional and the patient appears to be of importance. A written selfmanagement and emergency plan is also of importance in patients with severe disease. However, the benefit of education has never been tested in terms of treatment efficacy, compliance and effectiveness in allergic rhinitis.

The training of health care professionals is important but very few studies have been performed. A recent one showed that standardized allergy education given to primary healthcare professionals leads to modest improvements in disease-specific quality of life in patients with perennial rhinitis [1805].

di ver, y educat, disease-speci.

## 8. Health promotion and prevention

#### Primary and secondary prevention

- Breastfeeding is recommended regardless of the atopic background of the infant
- Current dietary manipulations of maternal and infant feeding do not have a preventive role for atopic diseases and are not recommended
- Environmental tobacco smoke should be avoided in pregnant women and children although more data are needed
- Conflicting data exist concerning early-life exposure to pets and the development of atopy. No general recommendation can be made
- House dust mite avoidance in infancy has inconsistent effect on the development of allergy or asthma and cannot be recommended
- Primary prevention of occupational airway disease is recommended
- Secondary prevention of asthma is still a matter of debate and more data are needed

Health promotion is the process enabling people to increase control over their health and its determinants. It is a core function of public health and a cornerstone of primary health care [1806]. The cost-effectiveness of any program should be carefully evaluated before it is implemented.

There is a general misconception that the same factors which are involved in the induction of allergy are also likely to incite disease once established. However, this is not necessarily the case. Thus, strategies for primary prevention or prophylaxis may be very different to those required for the management of established disease. A more complete description of preventive measures is reported in the WHO initiative "Prevention of allergy and asthma" [1807].

## 8.1. Primary prevention of atopic diseases

The role of primary prevention of allergic diseases has been a matter of debate for the last 40 years and is not yet resolved [1808]. More research is required, especially with regard to longer periods of follow-up for all current intervention studies aimed at reducing exposure, the onset and duration of intervention and other novel intervention measures in the primary prevention of asthma and allergic diseases in childhood [1809, 1810].

## 8.1.1. Maternal and infant feeding

Much of the early efforts at allergen avoidance have focused on infant feeding and, in particular, early avoidance of cow's milk protein and sometimes egg, fish and nuts. Most studies have commenced avoidance in the postnatal period and results have been variable with no clear-cut view emerging.

In 2001, a meta-analysis was carried out concerning breastfeeding and found that although some protective effect against atopic dermatitis and/or wheezing was found in studies carried out for less than four years, the benefits were less pronounced in studies where participants were followed for a longer period of time [1811]. Newer studies [1812-1814] and meta-analyses [1815-1817] did not change the results of the first one. Moreover, the risk of asthma was found to be enhanced in breastfed children after the age of six years in some [1818-1820] but not all prospective studies [1821, 1822]. Results from a developing country suggest a protective effect of prolonged breastfeeding on the development of allergic disease, particularly hay fever, in children born to non-allergic parents. This protective effect was not

found in children with an allergic predisposition [1823]. Breastfeeding is therefore highly recommended for all infants [1824], irrespective of atopic heredity since its preventive effect on atopy is not demonstrated [1808, 1815]. Reasons for these controversies include methodological differences and flaws in the studies performed to date, the immunologic complexity of breast milk itself and, possibly, genetic differences among patients that would affect whether breastfeeding is protective against the development of allergies or is in fact sensitizing [1825-1827].

In high-risk infants who are unable to be completely breastfed, there is evidence that prolonged feeding with a hydrolyzed compared to a cow's milk formula reduces infant and childhood allergy and infant cow's milk allergy [1828]. Another Cochrane meta-analysis proposed that feeding with a soy formula cannot be recommended for prevention of allergy or food intolerance in infants at high risk of allergy or food intolerance [1829].

Further trials are required to determine if significant clinical benefits persist beyond 5 years of age and if there is any additional benefit from use of an extensive compared to a partially hydrolysed formula. Incremental costs of formula and the effect on compliance should be measured.

A panel studied the optimal age for the introduction of solid foods in infants with an atopic risk [1830] and proposed that selected supplemental foods should be introduced after 6 months, dairy products 12 months, hens' eggs 24 months and peanuts, tree nuts, fish and seafood at least 36 months. For all infants, complementary feeding can be introduced from the sixth month, but egg, peanut, tree nut, fish and seafood introduction require caution.

The prescription of an antigen avoidance diet to a high-risk woman during pregnancy is unlikely to reduce substantially her child's risk of atopic diseases, and such a diet may adversely affect maternal or fetal nutrition, or both [1831]. The prescription of an antigen avoidance diet to a high-risk woman during lactation may reduce her child's risk of developing atopic eczema, but better trials are needed [1831]. Furthermore, there is at least limited evidence that early dietary manipulation may be a risk for impaired growth. Therefore, great caution is required in employing such approaches [1832].

#### 8.1.2. House dust mites

Indoor allergens have a major impact on rhinitis and asthma, and exposure in sensitized subjects can compromise lung function. A reduction in indoor allergen exposure would seem a logical facet to treatment [336, 1426]. Methods for reducing mite allergen levels that are effective in the laboratory may not work in the home and may not result in a clinical benefit. Several ongoing studies are investigating the effects of environmental control on the primary prevention of asthma and allergies. Although results of a pan-European study [1833] at age 4, the Isle of Wight [1834] and Canadian studies [1835] at age 8 and 7 years are providing some encouragement, the preventive effect of avoidance of house dust mite allergen alone during pregnancy or after birth is disappointing [1836-1841]. It will therefore be some time before a definitive public health message emerges.

#### 8.1.3. Early exposure of pets

Several studies have shown conflicting results on the influence of early-life exposure to indoor allergens and the subsequent development of sensitization and symptoms [249, 1842, 1843]) The German Multi-Center Allergy Study (MAS) [1844, 1845] and the Dutch PIAMA study [1846] reported a dose-response relationship between early cat exposure and sensitization in children. In another study, feather pillow use and the ownership of furred pets did not increase the risk of developing allergic rhinitis [1847]. On the other hand, early exposure to cats or dogs was found to protect against a later allergy development [1848-1851]. Another study in the USA showed an inverse U-shape association between cat

exposure and sensitization [1852]. There are also studies reporting no association between cat allergen exposure and sensitization [1853, 1854]. Methodological challenges need to be addressed in these studies. As an example, the inverse association between current pet ownership and sensitization and rhinitis symptoms may be partly due to the removal of pets in families with sensitized and/or symptomatic children [1855]. Moreover, other bias may be found since there seems to be a selection of pet exposure based on parental history of allergy, maternal smoking and socioeconomic factors [1856].

Many children exposed to high levels of Fel d 1 in dust at home produce an IgG and  $IgG_4$  antibody response to Fel d 1 without an IgE antibody [1852]. This modified Th2 response is not associated with symptoms and may be regarded as a form of immunological tolerance [1857].

#### **8.1.4. Occupational agents**

Very few surveillance programs have been carried out to assess the efficacy and effectiveness of primary prevention [1436, 1858] and some are subject to criticism. In workers exposed to enzymes, preventive measures have been found to reduce the onset of asthma [1859-1861]. Primary prevention of natural rubber latex allergy is still a matter of discussion although widely proposed [1435, 1862]. Two meta-analyses published in 2006. One found that there were no studies of sufficient quality to make any conclusion [137], the second proposed such an intervention [1863]. However, it seems justified to propose the reduction of latex levels in health care workers. The primary prevention of occupational asthma due to isocyanates is questionable since occupational asthma cases have been reduced in countries where measures are implemented [1864] as well as in those where no surveillance program is applied [1865].

#### 8.1.5. Environmental tobacco smoke

Many children are exposed to tobacco smoking, both before and after birth. Smoking during pregnancy affects foetal lung development especially when there is a family history of asthma and hypertension during pregnancy [1866, 1867] and causes abnormal airway function [1868]. Effects of ETS due to parental smoking on wheezing in early childhood have been described in epidemiological studies [1869-1873] but few have made an effort to discriminate between the effects of prenatal and postnatal exposure. Recent studies suggest that smoke exposure *in utero* may be at least as detrimental to respiratory health in early life as postnatal exposure to ETS [1874]. Another study suggested that in utero exposure is more important [1875]. There is not usually any association between atopy, rhinitis, eczema and parental smoking [1873]. Counselling parents to quit smoking still remains an important policy.

# 8.1.6. Prevention of the development of asthma in rhinitis patients

Allergen vaccination is primarily used to improve symptoms of allergic diseases, but there are data showing that allergen vaccination may be preventive. Allergen vaccination in patients with only allergic rhino-conjunctivitis may prevent the onset of asthma [1876]. A multi-center Preventive Allergy Treatment (PAT) study started in children aged 7 to 13 [1688] showed that the actively treated children had significantly fewer cases of new onset asthma than the control group after three years on allergen immunotherapy. Methacholine bronchial provocation test results improved significantly in the actively treated group only. The effect persisted during two years after cessation of immunotherapy [1689].

Some SLIT studies have suggested a similar effect [1877] but more data are needed to fully appreciate the exact role of SLIT. However, since SLIT may be started earlier than subcutaneous immunotherapy in infants, it has a potential role for the secondary prevention of allergic diseases.

Pharmacotherapy was tested in infants at a high risk of developing asthma and results are not yet consistent. Ketotifen [1878] and cetirizine [1550, 1879] have been found to reduce wheezing, at least in a subgroup post-hoc analysis [1879] but the data need confirmation. The first study was relatively underpowered and the second only found a significant protective effect in the predefined post-hoc analysis of a non-significant primary end point. The EPAC study will be the definitive study and results are pending.

# 8.1.7. Secondary prevention of new sensitizations

Several longitudinal studies report that allergic sensitization increases with age from childhood to adulthood. House dust mite sensitization and, to a lesser degree, pollen sensitization, seem to play a "triggering" role in the development of polysensitization, since a high proportion of children originally monosensitized to house dust mites or to pollens became polysensitized. Case-control studies have shown that many monosensitized patients treated with subcutaneous immunotherapy do not develop a new sensitization whereas those who do not receive immunotherapy become polysensitized [1672, 1684, 1880].

delle,

# 9. Links between rhinitis and asthma

The nasal airways and their closely associated paranasal sinuses are an integral part of the respiratory tract [1, 14, 1881]. The nasal and bronchial mucosa present similarities and one of the most important concepts regarding nose-lung interactions is the functional complementarity [14]. Most patients with asthma have rhinitis [18] suggesting the concept of "one airway one disease". The presence of allergic rhinitis commonly exacerbates asthma, increasing the risk of asthma attacks, emergency visits and hospitalizations for asthma. However, not all patients with rhinitis present with asthma and there are differences between rhinitis and asthma [19, 20].

In this section, the links between sinusitis or nasal polyps and asthma will not be considered.

#### 9.1. Epidemiologic evidence

#### Epidemiologic links between rhinitis and asthma

- The vast majority of asthmatics experience rhinitis
- Many patients with rhinitis have asthma
- Asthma prevalence is increased in rhinitis, and particularly so in persistent and/or moderate/severe rhinitis
- Allergy is associated with rhinitis and asthma
- Occupational agents can cause rhinitis and asthma
- · Non-allergic rhinitis is associated with asthma
- Allergic and non-allergic rhinitis are risk factors for asthma
- Rhinitis may be associated with non-specific bronchial hyperreactivity
- The coexistence of rhinitis with asthma appears to impair asthma control
- Most asthmatic exacerbations are associated with a nasal viral infection

#### **9.1.1.** Prevalence of asthma in patients with rhinitis

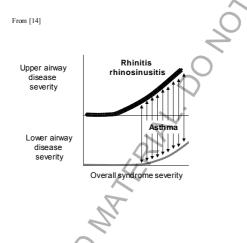
Epidemiologic studies have consistently shown that asthma and rhinitis often co-exist in the same patients [1]. The prevalence of asthma in subjects without rhinitis is usually less than 2%. The prevalence of asthma in patients with rhinitis varies from 10 to 40% depending on studies [67, 1882-1884]. Patients with a sensitization to indoor and outdoor allergens are more prone to have asthma as a co-morbidity than those with indoor or outdoor allergy [1883]. Although all patients with rhinitis may suffer from asthma [1885], patients with moderate/severe persistent rhinitis present may be more likely to suffer from asthma than those with an intermittent and/or a milder form of the disease [67]. Mucosal swelling was found to be common in asthmatics [1886].

The difference between rhinitis patients with or without asthma symptoms may be partly related to the perception of dyspnoea in patients with bronchial hyperreactivity [1887].

# 9.1.2. Prevalence of rhinitis in patients with asthma

The majority of patients with asthma experience rhinitis symptoms [277, 648, 909, 937, 945, 1882, 1888-1899]. However, in many instances, symptoms may predominate in one organ and be hidden or unrecognized in other organs even though they exist. In preschool children, nasal symptoms and wheezing may present a different relationship than later in life [1900].

Rhinitis is a factor independent of allergy in the risk for asthma [1, 1901].


However, the results observed in some developing countries may differ from those in western populations [1893, 1902-1904]. In these countries, rhinitis and asthma may be independent. However, the prevalence of rhinitis and asthma in rural communities or low-income countries is generally lower than that in developed westernized urban communities. A considerable difference between the prevalence of symptoms and the prevalence of medical diagnosis, detected in underserved populations, may suggest a significant proportion of underdiagnosis, which might be related to a lack of awareness and limited access to health care [903, 1905]. In other developing countries like Vietnam [1906], Nigeria [921], Bangladesh [1907] or Brazil [1908], childhood atopy symptom prevalence and links between rhinitis and asthma are similar to those in developed countries.

#### 9.1.3. Rhinitis as a risk factor for the control of asthma

Adults and children with asthma and documented concomitant allergic rhinitis experience more asthma-related hospitalizations and GP visits, and incur higher asthma drug costs than adults with asthma alone [1909-1914]. These patients also experience more frequent absence from work and decreased productivity. However, some studies have not shown such an association [1915].

A model has been proposed to illustrate the relationship between allergic rhinitis and asthma [14] Figure 111. The basic principle is that the two conditions are manifestations of one syndrome in two parts of the respiratory tract and that the more severe the rhinitis, the more severe the asthma.

#### Figure 11 – Links between rhinitis and asthma severity



#### 9.1.4. Changes in the prevalence of asthma and rhinitis

Several studies have examined the changes in the prevalence of asthma and rhinitis in the same population using identical methods. Results are variable. The International Study of Asthma and Allergies in Childhood (ISAAC) was repeated at least 5 years after Phase One to examine the changes in the prevalence of the symptoms of these disorders [853]. A rise in the prevalence of symptoms was found in many centers, but an absence of increases in the prevalence of asthma symptoms in the older age-group was observed for centers with an existing high prevalence.

Some studies have demonstrated a parallel increasing prevalence of asthma and rhinitis [954, 1916] whereas others have not. Often, it is found that rhinitis prevalence increases faster than asthma, the prevalence of which was also found to decrease in some countries [904, 947, 948, 1896, 1917-1922]. It appears that in regions of highest prevalence the proportion of subjects suffering from asthma or rhinitis may be reaching a plateau [1919].

Results of four consecutive surveys suggest that the increase in the prevalence of asthma and hay fever in 5-7-year-old children living in Switzerland may have ceased. However, symptoms of atopic dermatitis may still be on the rise, especially among girls [957, 1923]. Similar findings were observed in Estonia [979].

These studies appear to indicate that the changes in the prevalence of rhinitis and asthma differ but they were not designed to show the variation in the links between the two sites of the airways.

#### 9.1.5. Rhinitis and non-specific bronchial hyperreactivity

Many patients with allergic rhinitis have an increased bronchial reactivity to methacholine or histamine [939], especially during and slightly after the pollen season [532, 1924-1927] but there are large differences in the magnitude of airway reactivity between asthmatics and rhinitics which are not explained by the allergen type or degree of reactivity. Recently, a stronger nasal responsiveness to cold air was observed in patients with rhinitis and asthma, compared to those with rhinitis alone [1928].

Patients with perennial rhinitis have a greater bronchial reactivity than those with seasonal rhinitis [939, 1929]. Patients with persistent rhinitis have a greater bronchial hyperreactivity than those with intermittent disease [1930].

Discriminant analysis in allergic rhinitis and asthma can be obtained from the methacholine dose-response [1931].

#### 9.1.6. Allergic rhinitis as a risk factor for asthma

The age of onset of atopy may be an important confounding factor for the development of asthma and rhinitis or rhinitis alone. In infants and very young children, lower respiratory tract symptoms often develop before nasal ones [1049]. It is difficult to make a clear diagnosis of asthma in this age group. In an Australian study, it was found that atopy acquired at an early age (before the age of 6 years) is an important predictive factor for asthma continuing into late childhood whereas atopy acquired later was only strongly associated with seasonal allergic rhinitis [250, 1357].

Asthma develops more commonly in patients with rhinitis than in those without. The Children's Respiratory Study [721] showed that the presence of physician-diagnosed allergic rhinitis in infancy was independently associated with a doubling of the risk of developing asthma by 11 years of age. In children and adults, allergic rhinitis as a risk factor for asthma was shown in a 23-year follow-up of college students [1932]. Significantly more (10.5%) of the students originally diagnosed with allergic rhinitis went on to develop asthma compared with 3.6% of those who did not have rhinitis. This study was confirmed by other studies [1358, 1933-1937]. In both studies, the onset of asthma was associated with allergic rhinitis, and in the US study, after stratification, rhinitis increased the risk of the development of asthma by about 3 times among both atopic and non-atopic patients and by more than 5 times among patients in the highest IgE tertile. Patients with rhinitis, with persistent and severe nasal symptoms and with a personal history of physician-confirmed sinusitis had an additional increased risk of asthma development. The authors concluded that rhinitis is a significant risk factor for adult-onset asthma in both atopic and non-atopic subjects.

It is not clear whether allergic rhinitis represents an earlier clinical manifestation of allergic disease in atopic subjects who will later go on to develop asthma or whether the nasal disease itself is causative for asthma.

The presence of bronchial hyperresponsiveness and concomitant atopic manifestations in childhood increases the risk of developing asthma and should be recognized as a marker of prognostic significance, whereas the absence of these manifestations predicts a very low risk of future asthma [1936, 1938].

#### 9.2. Common risk factors

Asthma and allergic rhinitis share common risk factors. Nonetheless, many studies have provided evidence of some differences in environmental or genetic risks among these related conditions, suggesting a certain degree of specificity of phenotypes. Among the causative agents inducing asthma and rhinitis, some (e.g. allergens and aspirin [1939]) are well known to affect both the nose and the bronchi.

#### 9.2.1. Allergens

Most inhaled allergens are associated with nasal [33] and bronchial symptoms but in epidemiologic studies, differences have been observed.

The role of pollen exposure in asthma is not clear-cut in epidemiologic studies. In contradistinction to allergy to other inhalants, pollen allergy is not usually associated with asthma [285] and chest symptoms were not found to be more common in seasonal rhinitis than in non-rhinitis patients [939]. There is abundant literature confirming that pollen asthma exists [290]. Pollen-allergic patients commonly present rhinitis and conjunctivitis during the pollen season. They can also present pharyngitis, cough and wheezing [1940]. In most patients, chest symptoms are not associated with a measurable airflow obstruction [1940-1942]. Moreover, true asthma exacerbations may occur during dry days in some patients naturally exposed to pollens [1943, 1944], probably because pollen allergens can be born by submicronic particles which can penetrate deeply into the airways [399]. Thunderstorm-induced asthma is often, but not always, associated with pollen sensitization [401, 404, 1945-1947].

# 9.2.2. Occupational agents

Occupational diseases represent an interesting model in the study of the relationship between rhinitis and asthma. Occupational airway diseases include asthma [559], rhinitis [133], COPD [1948] and chronic cough [563]. There are many overlaps between the four diseases and it may be difficult to make a clear distinction between them. Moreover, many patients who suffer from occupational and non-OADs, are exposed to many risk factors and it may not be easy to demonstrate the occupational origin of the disease.

Work-related airway diseases refers to at least two nosological entities [558]:

- Occupational asthma and/or rhinitis "caused" by the workplace [559].
- And asthma (and/or rhinitis) which worsens at work due to other causes (work-aggravated or exacerbated asthma) [560, 561].
- Moreover, work disability is common among adults with severe asthma [559, 560] and rhinitis productivity [84, 562].

**Work-related chronic cough** is often associated with rhinitis, asthma or COPD, but, as the only symptom, represents a prevalent work-related airway disease [563, 564].

All of the most common triggers of occupational asthma can induce occupational rhinitis [133]. Subjects with occupational asthma may often report symptoms of rhinoconjunctivitis. Rhinitis is less pronounced than asthma with low molecular weight agents. On the other hand, rhinitis more often appears before asthma in the case of high molecular weight agents such as small mammals [1, 1949]. In addition, rhinitis caused by occupational agents will often develop into occupational asthma highlighting the importance of the cessation of allergen exposure in occupational allergic rhinitis and this in turn to prevent any intractable asthma.

# 9.3. Commonalities and differences in the mechanisms of asthma and rhinitis

The nasal and bronchial mucosa present similarities, and rhinitis and asthma are commonly associated. However, the nose and bronchi have a different embryologic origin [1950], smooth muscle is present only in the bronchi and there are differences between rhinitis and asthma.

# Commonalities and differences in mechanisms between rhinitis and asthma

- Most asthmatics have rhinosinusitis as demonstrated by CT-scans
- Severe asthmatics have more severe rhinosinusitis than mild asthmatics
- Eosinophilic inflammation is present in the nasal and bronchial mucosa of asthmatics
- Epithelium and basement membrane differ in the nasa, and bronchial mucosa of asthmatics
- Bronchial and nasal mucosa of COPD patients appear to be similar
- Endobronchial challenge in rhinitis patients induces a bronchial reaction
- Bronchial challenge induces nasal inflammation
- Nasal challenge induces bronchial inflammation
- Allergic inflammation has a systemic component

#### 9.3.1. Common pathways

# 9.3.1.1. IgE-mediated allergy

Allergic asthma and rhinitis are commonly associated with raised circulating levels of IgE and the increased presence of total-serum IgE is a risk factor for asthma even in non-allergic individuals [1951, 1952]. Allergen-specific IgE is a pre-requisite for the development of allergic inflammation in both allergic rhinitis and asthma (see Chapter 4.1.1).

#### 9.3.1.2. Cysteinyl leukotrienes

Cysteinyl leukotrienes (CysLT) are a family of inflammatory lipid mediators (LTC<sub>4</sub>, LTD<sub>4</sub> and LTE<sub>4</sub>) synthesized from arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils and macrophages. CysLT are multi-functional mediators in allergic rhinitis [803] and asthma [1953, 1954]. They are released from inflammatory cells that participate in allergic rhinitis and asthma [1955]. Receptors for CysLT are located in nasal and bronchial tissues, CysLT are increased in patients with allergic rhinitis and asthma and are released following allergen exposure. Administration of CysLT reproduces the symptoms of allergic rhinitis and asthma. CysLTs predominate in both the early and late phase of the allergic response. These mediators play roles in the maturation and tissue recruitment of inflammatory cells, as well as in the complex inter-regulation between CysLT and a variety of other inflammatory mediators.

#### 9.3.1.3. Nitric oxide

Nitric oxide (NO) was initially described as an endothelium-derived relaxing factor [1956]. It is now demonstrated that NO has a potent regulatory role in a wide variety of functions and tissues [1957] and is produced during inflammation [1958, 1959]. It is produced in the nose [1960, 1961] and paranasal sinuses [1962]. NO levels are increased during allergic rhinitis and other pathologic conditions of the nose including rhinosinusitis [123, 1963].

High levels of NO can be found in exhaled air and most are derived from the paranasal sinuses [1964] suggesting that there may be interactions between upper and lower airways [14]. NO produced in the upper airways may play a protective role for the entire respiratory tract. It has strong bacteriostatic and anti-viral activities [1965, 1966], in particular on rhinoviruses [1967, 1968]. It improves oxygenation [1969], exerts bronchodilatory activities [1970] and modulates lower airways responsiveness.

# 9.3.2. Similarities and differences of nasal and bronchial inflammation in asthma and rhinitis

In normal subjects, the structure of the airways mucosa presents similarities between the nose and the bronchi. Both nasal and bronchial mucosa are characterized by a pseudostratified epithelium with columnar, ciliated cells resting on a basement membrane. Underneath the epithelium, in the submucosa, vessels and mucous glands are present with structural cells (fibroblasts), some inflammatory cells (essentially monocytic cells, lymphocytes and mast cells) and nerves [14, 1971, 1972].

There are also differences. In the nose, there is a large supply of sub-epithelial capillaries, arterial systems and venous cavernous sinusoids. On the other hand, smooth muscle is present from the trachea to the bronchioles [1973]. In asthma and rhinitis, inflammation of the nasal and bronchial mucosa is sustained

In asthma and rhinitis, inflammation of the nasal and bronchial mucosa is sustained by a similar inflammatory infiltrate including eosinophils, mast cells, T-lymphocytes, cells of the monocytic lineage [1972, 1974], similar pro-inflammatory mediators (histamine, CysLT), Th2 cytokines and chemokines [767, 1972, 1975-1977].

However, the magnitude of inflammation may not be identical. In patients with moderate-severe asthma, eosinophilic inflammation is more pronounced in the bronchi than in the nose [815], whereas in patients with mild asthma, inflammation appears to be similar in both sites. Moreover, eosinophilic inflammation of the nose exists in asthmatics with or without nasal symptoms [1978].

In order to determine whether nasal inflammation in asthma was related to asthma or was found commonly in other bronchial diseases, nasal inflammation and sinus involvement were studied in patients with COPD. Less than 10% of the patients with COPD have nasal symptoms. In patients with COPD, the nasal and bronchial mucosa present similar features with epithelial metaplasia and increased inflammatory cells (CD8+ T cells and neutrophils) [1979]. CT-scans show few abnormalities in COPD. Thus, nasal and sinus inflammation seen in asthmatics is related to asthma and is not a feature of all bronchial diseases (Table 29).

| 4                 |                          |                         |                                   |  |
|-------------------|--------------------------|-------------------------|-----------------------------------|--|
|                   |                          | Nasal mucosa            | Bronchial mucosa                  |  |
|                   |                          | Rhinitis/asthma         | Asthma                            |  |
| Epithelium        | Shedding                 | Variable, often minimal | Common, in particular in          |  |
|                   |                          |                         | severe disease                    |  |
|                   | Metaplasia               | Sometimes               | Very rarely                       |  |
| Basement membrane | Collagen IV              | Normal                  | Normal                            |  |
|                   | Collagen III, V, fibrous | Pseudo-thickening may   | Pseudo-thickening very            |  |
|                   | proteins                 | occur, but limited      | common                            |  |
| Submucosa         | eosinophils              | Often present           | Often present                     |  |
|                   | CD4+ T cells             | Commonly increased      | Commonly increased<br>Low numbers |  |
|                   | CD8+ T cells             | Low numbers             |                                   |  |
|                   | Elastase + cells         | Sometimes increased     | Usually low numbers               |  |
|                   |                          | numbers                 |                                   |  |
|                   | CD68+ cells              | Sometimes increased     | Often increased numbers           |  |
|                   |                          | numbers                 |                                   |  |
|                   | Collagen deposition      | Possible                | Common but not extensive          |  |

| Fibroblasts    | Possibly increased numbers         | Increased numbers          |
|----------------|------------------------------------|----------------------------|
| Myofibroblasts | ?                                  | Present                    |
| Smooth muscle  | None (except around blood vessels) | Metaplasia and hyperplasia |

#### 9.3.3. Bronchial inflammation in rhinitis

Some studies have examined the bronchial mucosa in atopic non-asthmatic patients or in patients with allergic rhinitis. They have all combined to indicate that there was a slight increase of the basement membrane size and a moderate eosinophilic inflammation [1980-1984]. Natural exposure to pollen during season provokes an increase in airway responsiveness in non-asthmatic subjects with seasonal allergic rhinitis and also induces inflammatory cell recruitment and IL-5 expression, leading to bronchial inflammation [1985]. An eosinophilic inflammation, remodeling of the lower airway, bronchial responsiveness and cough reflex sensitivity were all observed in non-asthmatic subjects with nasal allergy [1986].

#### 9.3.4. Nasal and bronchial remodeling

Remodeling is defined as "model again or differently, reconstruct" [1987]. This is a critical aspect of wound healing, representing a dynamic process which associates extracellular matrix (ECM) production and degradation. Remodeling usually occurs in reaction to an inflammatory condition which in turn leads to a normal reconstruction process (model again) or a pathologic process (model differently) and is not necessarily associated with fibrosis. Remodeling therefore exists in all inflammatory diseases but its control differs largely depending on the disease.

In 1992, it was proposed that asthma, a chronic inflammatory disease, was associated with abnormal airways remodeling [1987] and it took several years to understand the concept of "remodeling". Bronchial remodeling always exists in asthma whereas it may not be clinically demonstrated [1972, 1976]. However, non-specific bronchial hyperreactivity, a feature associated with airway remodeling, is almost always present in asthma [1988]. In allergic rhinitis, another chronic inflammatory disease, remodeling is still poorly understood [19, 808, 809]. Even though inflammation is similar in allergic rhinitis and asthma, nasal remodeling as well as its clinical consequences are less extensive in the nose by comparison to those of bronchi (see Chapter 4.1.7).

## 9.3.5. Allergy as a local disease

Endobronchial allergen challenge carried out on non-asthmatic patients with seasonal rhinitis induced bronchoconstriction [1989] and the secretion of pro-inflammatory mediators and cytokines as well as the recruitment of inflammatory cells in the lavage fluid [1990-1992]. These studies combine to indicate that patients with nasal symptoms can develop asthma only if the allergen is properly administered into the airways. It may be argued that the doses of allergen inducing these bronchial reactions are far greater than those naturally occurring during allergen exposure. This situation seems to exist in thunderstorm-induced asthma [401] which has been associated with grass pollen allergy [404]. The aerodynamic size of pollen grains ranges from 10 to 100  $\mu$ m and only a fraction of them can be deposited into the bronchi, thus most patients present only rhinitis with no asthma. However, when exposed to water, pollen allergens are released in submicronic particules, starch granules, which can reach the lower airways and induce asthma [400].

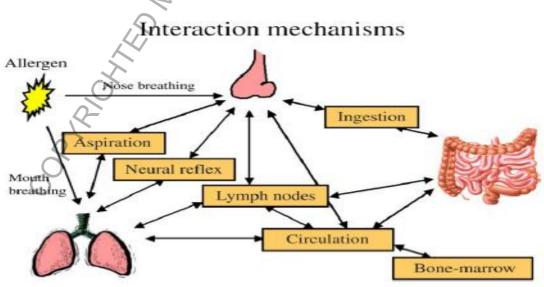
It is presently unknown as to which factors determine the occurrence and persistence of asthma in house dust mite-allergic individuals. The difference in bronchial inflammation

between asthma and non-asthmatic rhinitis appeared to be more closely related to indices for neutrophilic inflammation [1993].

# 9.3.6. Allergy as a systemic disease: Bidirectional relationship between nasal and bronchial inflammation

Endobronchial allergen challenge can induce nasal and bronchial symptoms as well as reductions in pulmonary and nasal function [1994, 1995]. In this study, the number of eosinophils increased in the challenged bronchial mucosa, in the blood and in the nasal mucosa 24 hours after bronchial challenge. Moreover, eotaxin-positive cells in the nasal *lamina propria* and an enhanced expression of IL-5 in the nasal epithelium were found 24 hours after bronchial challenge.

Nasal allergen challenge can induce bronchial inflammation [1996-1998].


In patients with allergic diseases, allergen provocation can activate a systemic response that provokes inflammatory cell production by the bone marrow [1994, 1995, 1998-2000]. After the release and differentiation of progenitor cells, eosinophils, basophils and mast cells are typically recruited to tissues in atopic individuals. An understanding at the molecular level of the signaling process that leads to these systemic responses between the target organ, especially the airways, and the bone marrow may open up new avenues of therapy for allergic inflammatory disease [2001]. Studies that support the critical involvement of the bone marrow in the development of eosinophilic inflammation of the airways point out the systemic nature of these conditions.

Patients with asthma have an inflammation of the salivary glands [2002] and the gut [2003] suggesting a generalized inflammation of the mucosal system.

A second important mechanism may be involved in the systemic origin of airway inflammation. *In situ* hemopoiesis [2004] depends on the production of hemopoietic cytokines by inflamed tissues from patients with allergic rhinitis [2005] which, by generating a particular local "microenvironment", promote the differentiation and maturation of eosinophil progenitors that populate the nasal or the bronchial mucosa [2006].

It is therefore likely that a truly "systemic" response to the application of inflammatory stimuli to the nasal (or bronchial) mucosa should be associated with an activation of the aforementioned mechanisms (Figure 122).

#### Figure 12 – Systemic interactions of allergic diseases



From Braunstahl et al [2007]

# 9.4. Impact of the nasal function and dysfunction on lower airways

The most important concepts regarding nose-lung integration are the anatomical similarities and the functional complementarity that assigns the role of the protector of the lung to the nose. This role is achieved through a variety of functional characteristics of the nose [2008] which include warming and humidification, filtering and mucociliary clearance as well as air conditioning of the lower airways. Besides inflammatory processes, protective functions of the nose may impair the lower airways and explain some of the links between rhinitis and asthma.

Impaired nasal mucosal air conditioning has only been shown indirectly [2009] and its role on the lower airways is not yet clear. Patients with chronic nasal disease suffer from decreased mucociliary clearance [2010] but no study exists showing its effect on the lower airways. The nasal passages of asthmatics has a decreased ability to warm and humidify inspired air [2011].

Impaired air warming and humidification by the nose may have some important effects [2012]. A stronger nasal responsiveness to cold air was found in patients with rhinitis and asthma, as compared to those with rhinitis alone [1928]. In patients with asthma, but not in healthy subjects, provocation with cold air in the nose causes bronchoconstriction while warm air causes bronchodilation [2013]. These findings have suggested the existence of a nasobronchial reflex [2014] which has not been demonstrated [2015]. Increasing the transfer of heat and water in the lower respiratory tract alters the bronchial and nasal function in a linked fashion. Forcing the nose to augment its heat-exchanging activity does reduce nasal caliber but has no effect on the intrathoracic airways [2016]. Nasal breathing protects against exercise-induced bronchospasm [2017, 2018].

The filtering of particles and gaseous materials in inhaled air is another major function of the air-conditioning capacity of the nose. The beneficial effect of nose breathing by comparison to mouth breathing has been shown in exercise-induced asthma [2017-2019] and to a lesser extent in SO<sub>2</sub>-induced asthma [2020, 2021].

It therefore appears that the alteration of nasal function has only a small effect on the lower airways.

## 9.5. Clinical consequences

#### Effect of rhinitis and asthma on quality of life

- QOL is impaired in asthma
- QOL is impaired in rhinitis
- The physical component of QOL is impaired in asthma
- The social component of QOL is impaired in rhinitis

Quality of life has been found to be impaired in patients with asthma and in patients with allergic rhinitis, and the relative burden of these diseases has recently been studied using the generic SF-36 questionnaire in the European Community Respiratory Health Survey (ECRHS), a population-based study of young adults [87]. Patients with both asthma and allergic rhinitis experienced more physical limitations than patients with allergic rhinitis alone, but no difference was found between these two groups regarding concepts related to social/mental health. Subjects with asthma but without rhinitis could not be studied since their number was too low. However, it seems that impairment in the social life of asthmatics may be attributable to nasal symptoms.

Significant deterioration in rhinoconjunctivitis-specific QOL was observed through the pollination period in patients with allergic rhinitis and asthma. At pollen peak, patients with asthma experienced significantly worse physical functioning than patients with rhinitis alone [2022].

#### 9.6. Therapeutic consequences

## Treatment of rhinitis and asthma using a single approach

- Oral H<sub>1</sub>-antihistamines are not recommended, but not contra-indicated in the treatment of asthma
- Intranasal glucocorticosteroids are at best moderately effective in asthma
- Intranasal glucocorticosteroids may be effective in reducing asthma exacerbations and hospitalizations
- The role of intra-bronchial glucocorticosteroids in rhinitis is unknown
- Montelukast is effective in the treatment of allergic rhinitis and asthma in patients over 6 years of age
- Subcutaneous immunotherapy is recommended in both rhinitis and asthma in adults, but it is burdened by side effects, in particular in asthmatics
- Anti-IgE monoclonal antibody is effective for both rhinitis and asthma

Although asthma and allergic rhinitis commonly occur together, treatments for one of the conditions could potentially alleviate the coexisting condition.

Medications for asthma and rhinitis can be administered via local (intranasal, intraocular) or inhaled (intrabronchial), oral and parenteral routes. There are advantages (and certain drawbacks) when the drug is administered directly into the target organ [1]. Moreover, some drugs like cromoglycate or nedocromil are not absorbed when given orally and are effective only when administered locally. In patients suffering from asthma and rhinitis, the local administration of drugs requires that they should be administered both nasally and bronchially and this may decrease compliance to treatment which is already low in asthma and rhinitis.

#### 9.6.1. Drugs administered topically

Glucocorticosteroids are the most effective drugs when administered topically in the nose and the bronchi for the treatment of rhinitis and asthma. The intranasal treatment of rhinitis using glucocorticosteroids was found to improve asthma at best moderately in some but not all studies [2023, 2024]. Symptoms and pulmonary function tests were inconstantly improved. However, a number of aspects, such as the extent to which the pathophysiology of the two diseases overlaps and whether treating one will affect the other, still remain to be clarified [2025].

Less is known about the effects on nasal disease of inhaled (intrabronchial) treatment with glucocorticosteroids. A study examined the effects on nasal allergic disease of inhaled Budesonide (avoiding nasal deposition of the drug) in patients with seasonal allergic rhinitis, but without asthma [2026]. During the birch pollen season, Budesonide reduced the seasonal eosinophilia both in the circulation and in the nose along with an attenuation of seasonal nasal symptoms. However, this study was not confirmed [2024].

#### 9.6.2. Drugs administered orally

Drugs administered by the oral route may have an effect on both nasal and bronchial symptoms [2027]. Oral H<sub>1</sub>-antihistamines represent the first-line treatment of allergic rhinitis but although studies have found some effect on asthma symptoms [1942, 2028-2030], many

negative studies are unpublished and pulmonary function tests are unchanged. These drugs are not recommended for the treatment of asthma [2031, 2032]. The association of oral  $H_1$ -antihistamines and decongestants was found to be effective on asthma symptoms [2033].

Several pivotal studies were carried out to assess the efficacy of leukotriene receptor antagonists in seasonal and perennial allergic rhinitis (see chapter 7.2.5). In studies carried out on patients with seasonal allergic rhinitis and asthma, Montelukast was found to improve nasal and bronchial symptoms [1588, 1589]. As-needed beta-agonist use (puffs/day) was also reduced with Montelukast. In the COMPACT trial, the subgroup of asthmatic patients with allergic rhinitis, a combined treatment approach that included Montelukast and Budesonide, provided significantly greater efficacy in reducing airflow obstruction as compared to doubling the dose of Budesonide [2034]. A post hoc resource use analysis of a 52-week, double-blind multicentre clinical trial (IMPACT) showed that the presence of self-reported concomitant rhinitis in patients with asthma resulted in a higher rate of asthma attacks and more emergency room visits compared with asthma patients without concomitant rhinitis [1909].

Oral glucocorticosteroids are highly effective in the treatment of rhinitis and asthma but side effects are common after long-term use.

#### **9.6.3.** Specific immunotherapy

The indications of specific immunotherapy in allergic asthma and rhinitis have been separated in some guidelines [9, 2035]. This artificial separation has led to unresolved issues [2036-2039] possibly because the allergen-induced IgE-mediated reaction has not been considered as a multi-organ disease. It is therefore important to consider specific immunotherapy based on the allergen sensitization rather than on the disease itself since most patients with allergic asthma also present rhinitis or rhino-conjunctivitis [1649]. Several controlled studies have investigated the efficacy of allergen vaccination in asthma and rhinitis improved in the same patients [1102, 1655, 2040-2046].

The indications for immunotherapy in asthma are hampered by safety issues [1678]. Most guidelines propose not to use immunotherapy in patients with severe or uncontrolled asthma because of the risk of severe bronchial reactions using subcutaneous immunotherapy [2047-2049]. One study was safe and effective in patients with moderate to severe asthma [2050]. Sublingual immunotherapy may be safe in patients with moderate to severe asthma, but more data are needed. Moreover, pharmacotherapy is highly effective and safe in patients with mild or moderate asthma. Thus, there is little place for immunotherapy in asthma alone although a study has shown that a standardized mite extract could be effective and safe in patients with moderate to severe asthma. On the other hand, most patients with asthma have rhinitis and the indication for moderate/severe rhinitis and mild asthma is indicated.

When allergen vaccination is introduced to patients who only have allergic rhinoconjunctivitis, it may prevent the development of asthma. The early study of Johnstone and Dutton [2051] using several different allergens showed that after 3 years of treatment, children receiving pollen allergen vaccination developed less asthma than the control group. The Preventive Allergy Treatment (PAT) study showed that immunotherapy for three years with standardized allergen extracts of grass and/or birch shows a long-term clinical effect and preventive effect on the development of asthma in children with pollen rhinoconjunctivitis [1688, 1689]. Another study using sublingual vaccination with house dust mites also showed the prevention of asthma [1730]. More data are needed to make a recommendation with sublingual immunotherapy. The anti-IgE antibody, Omalizumab [768, 770], has been shown to be effective in patients with allergic rhinitis and moderate/severe allergic asthma. Its systemic activity and ability to reduce levels of IgE regardless of allergen specificity may be interesting in these respects.

#### 9.6.5. The treatment of rhinitis reduces asthma severity

Three post-hoc analysis studies have shown that treating allergic rhinitis reduces health care utilization for co-morbid asthma [2052-2054]. In a first study, a retrospective cohort study was carried out on 4,944 patients with both allergic rhinitis and asthma, aged 12 to 60 years, who were continuously enrolled and had no evidence of chronic obstructive pulmonary disease [2052]. The risk of an asthma-related event (hospitalizations and emergency department visits) for the treated group was about half that for the untreated group. In another retrospective cohort study carried out on 13,844 asthmatics of a managed care organization aged greater than 5 years [2053], patients who received intranasal glucocorticosteroids had a reduced risk for emergency department visits by comparison to those who did not receive this treatment. However, a bias may exist in observational studies on the effectiveness of nasal glucocorticosteroids in asthma [2055].

#### **9.7.** Costs

Rhinitis was found to increases the costs of asthma [1131, 2056] but more data are needed.

# 9.8. Rhinitis and asthma: a continuum of disease?

There are similarities and differences between the nasal and bronchial mucosa in rhinitis and asthma. It appears that most asthmatics experience rhinitis whereas only a fraction of rhinitis patients present clinically demonstrable asthma even though a greater number of patients have non-specific bronchial hyperreactivity. It seems that the epithelial-mesenchymal trophic unit exists from the nose to the bronchiolar-alveolar junction and that the same inflammatory cells are present throughout the airways suggesting a continuum of disease. Some mediators such as NO can exert their actions in the entire airways.

However, there are differences in terms of exposure of allergens and noxious agents, the nose being more exposed than the lower airways. There are also major structural differences between the nasal and the bronchial mucosa since in the former there is a large vascular supply whereas in the latter there is smooth muscle. Airway smooth muscle is of paramount importance in asthma due to its contractile properties, but in addition, it may contribute to the pathogenesis of the disease by increased proliferation and by the expression and secretion of pro-inflammatory mediators and cytokines.

The embryologic origin of the nose and the lower airways differs and may explain some differences in remodeling between these two sites.

These studies strongly support the 1999 WHO workshop "Allergic Rhinitis and its Impact on Asthma" [1] which recommended:

- "That patients with PER should be evaluated for asthma by history, chest examination and, if possible and when necessary, assessment of airflow obstruction before and after bronchodilator.

- That history and examination of the upper respiratory tract for allergic rhinitis should be performed in patients with asthma.

- To propose a strategy combining the treatment of both the upper and lower airway disease in terms of efficacy and safety."

The perception of patients and physicians about the links between asthma and rhinitis varies between countries, but acceptance appears to be higher than expected [2057, 2058]. However, the knowledge is not directly translated into practice since fewer physicians co-prescribe treatments for rhinitis and asthma in the same patient.

#### 9.9. Management of asthma and rhinitis in athletes

Elite athletes commonly use drugs to treat asthma, exercise-induced bronchial symptoms and rhinitis. Only a few controlled studies have been conducted on the effects of anti-asthma drugs on asthma symptoms, bronchial hyperresponsiveness and airway inflammation in elite athletes. Inhaled ß2-agonists and leukotriene receptor antagonists are effective against EIB [2059]. In contrast, airway inflammation, bronchial hyperresponsiveness and symptoms have responded poorly to inhaled glucocorticosteroids [2060] and leukotriene antagonists [2061]. A single dose of montelukast attenuated bronchoconstriction from either exercise or EVH [2062]. As discontinuing high-level exercise has proved effective in reducing eosinophilic airway inflammation, exercise or training should be restricted in athletes having troublesome symptoms and sputum eosinophilia.

Since 2001, the International Olympic Committee-Medical Commission (IOC-MC) has required athletes using inhaled ß2-agonists to provide clinical evidence of their asthmatic condition [2063]. The distinction between oral (prohibited in sports) and inhaled salbutamol is possible, but athletes must be warned that an excessive use of inhaled salbutamol can lead to urinary concentrations similar to those observed after oral administration. 10,653 athletes competed in Athens; 4.2% were approved the use of a ß2-agonist and 0.4% were rejected. This approval rate was 26% less than the notifications in 2000 in Sydney (5.7%) [2064]. There is ample use of physician-prescribed medications in Finnish elite athletes [2065] but there are no signs of inhaled ß2-agonist overuse [181].

The purpose of the World Anti-Doping Code 2003 and the 2004 Prohibited List is to create a universal international standard to fight doping in competitive sports. The result of this is a whole series of changes for doctors with regard to their work with competitive athletes. The revised definition of doping now includes physicians in the group of persons who can fulfil the elements of a doping offence [2066]. The list of permitted and prohibited anti-allergic treatments is given in Table 28.

Switching training to less irritating environments should be considered whenever possible. It appears to be difficult to change the 'natural course' of asthma in athletes by anti-inflammatory treatment [2059].

# 9.10. Diagnosis of asthma in rhinitis patients

Unfortunately, the under-diagnosis of asthma is common around the world [2067-2070] and many patients might have been diagnosed with asthma if the links between the upper and lower airways had been recognized.

Due to the reversibility of the airflow obstruction, the diagnosis of asthma is difficult and great attention should be focused on the history of paroxysmal attacks of breathlessness commonly associated with chest tightness and wheezing, particularly at night and in the early hours of the morning. However, these common symptoms are not pathognomonic by themselves. A history of recurrent exacerbations (or attacks) may be provoked by nonspecific triggers such as allergens, irritants, exercise and virus infections. On the other hand, asthma symptoms are reversible spontaneously or under treatment.

In all patients with persistent rhinitis, asthma should be routinely investigated by history and, if needed, using pulmonary function tests assessing the reversibility of airflow obstruction under inhaled short-acting  $\beta$ 2-agonists. Patients with IAR have an increased risk

of developing asthma when compared to subjects without rhinitis. Questions for asthma should also be asked.

A simple questionnaire may be used for screening (Figure 133). However, more structured questionnaires have been validated [2071].



#### Figure 13 : Diagnosis of asthma in patients with rhinitis

Physical findings that suggest the diagnosis of asthma include clinical signs of dyspnoea, airflow limitation (wheezing) and hyperinflation. However, some patients may have a normal chest auscultation and, conversely, wheezing may be absent in very severe asthma exacerbations.

However, the diagnosis of asthma is confirmed by the demonstration of a reversible airflow obstruction which can easily be performed in patients of over 5 years of age [1428] using the following tests: forced expiratory volume in 1 second (FEV<sub>1</sub>), its accompanying forced vital capacity (FVC) [1428, 2072, 2073], the peak expiratory flow (PEF) [1428, 2074]. These tests can be used for recording the reversibility of airway obstruction after inhaled short-acting  $\beta$ 2-agonists. The diurnal variation of lung function using peak flow is another option.

Although  $FEV_1$  is the most robust test to assess airflow obstruction, it may not be sensitive enough to detect it in some patients with allergic rhinitis who may just have an obstruction of small airways [2075, 2076].

The diagnosis of asthma in patients with rhinitis is usually determined by the GP but also by specialists including ENT physicians. Whether the diagnosis of asthma requires confirmation by a specialist depends on the level of control of asthma as well as the health care system. It varies from country to country.

Although it is optimal to perform a pulmonary function test with reversibility in all asthmatics, one of the major issues is the place of spirometry in the evaluation of asthma in patients with rhinitis since most general practitioners and ENT physicians do not have the equipment to measure pulmonary function. It is possible to use structured questionnaires [2077] to make a relatively precise diagnosis of asthma in adolescents and adults. However, if a patient has a past history of severe asthma and/or signs of uncontrolled asthma, pulmonary function tests are needed.

Patients with rhinitis develop asthma more often than those without the disease and a regular follow up of patients with persistent rhinitis should include asthma assessment.

Physicians should inform the patient with rhinitis of the signs of asthma symptoms which may occur.

# 10. Other co-morbidities and complications

#### Other co-morbidities and complications

- Allergic conjunctivitis is a common co-morbidity of allergic rhinitis
- The other forms of conjunctivitis are not associated with an IgE-mediated allergic reaction
- Although the sinus may be involved during an allergic reaction, the role of allergy as a risk factor for chronic rhinosinusitis is still unknown
- Allergy does not appear to be a risk factor for nasal polyposis
- The role of allergy as a risk factor of otitis media with effusion is unknown
- Chronic cough can be caused by several etiologies including allergic rhinitis and chronic rhinosinusitis

Co-morbidities can be classified as due to a common causal pathway (e.g. allergy) or as a complicating co-morbidity (complication of infections due to mucosa swelling, stais of mucous) [2078].

# **10.1.** Conjunctivitis

Ocular symptoms usually referred to as "conjunctivitis" can be caused by allergic and non-allergic agents. Moreover, allergic eye diseases represent a heterogeneous entity including different forms of conjunctivitis with different mechanisms, symptoms and signs, pathophysiology, degree of severity and response to treatment [2079-2082]. Csonjunctivitis is usually classified as acute, allergic, vernal and atopic. An immunologic mechanism has also been postulated for conjunctival symptoms in contact-lens wearers (Table 30).

| Table 30 – Pathophysiology  | and nonaranhy  | of alloraia conjunctivitic |
|-----------------------------|----------------|----------------------------|
| rable 30 – Falliophysiology | and nosography | or anergic conjunctivitis  |

|                                 | Pathophysiology                                                 | Tarsal Conjunctiva | Cornea   | Eyelids |
|---------------------------------|-----------------------------------------------------------------|--------------------|----------|---------|
| Allergic conjunctivitis         | IgE, mast cells, eosinophils                                    | +                  | -        | +       |
| Vernal keratoconjunctivitis     | Th2, eosinophils; IgE                                           | ++                 | ++       | +       |
| Atopic keratoconjunctivitis     | IgE, mast cells, basophils, Th2 + Th1<br>Microbial antigens?    | ++                 | +++      | ++      |
| Giant-papillary conjunctivitis  | T lymphocytes (Th0?), leukotrienes;<br>Mechanical inflammation? | ++                 | <u>+</u> | -       |
| Contact blepharo-conjunctivitis | Dendritic cells, Th1                                            | <u>+</u>           | <u>+</u> | +       |

- <u>Acute allergic conjunctivitis</u> is an acute hypersensitivity reaction with hyperaemia and chemosis accompanied by an intense tearing, itching and burning of the eye, caused by an accidental exposure to several substances such as gas and liquid "irritants" or animal danders.
- <u>Allergic conjunctivitis</u> is the typical conjunctival reaction in allergic rhinitis, rhinoconjunctivitis or following exposure to allergens. Ocular symptoms occur in a large proportion of patients with rhinitis. Allergic conjunctivitis is more common with outdoor allergens than with indoor allergens. In some studies on pollen allergy, conjunctivitis is sometimes present in over 75% of patients suffering from rhinitis. However, the prevalence of the association between rhinitis and conjunctivitis cannot be easily defined,

since conjunctival symptoms are often considered of minor importance [2083], and possibly not spontaneously reported by patients with rhinitis and/or asthma in medical interviews or in questionnaire-based epidemiologic studies such as the ISAAC and the ECRHS [45, 914]. Accordingly, the association between rhinitis and conjunctivitis is largely underestimated in epidemiologic studies.

- <u>Vernal keratoconjunctivitis</u> is a severe bilateral eye condition in children with frequent involvement of the cornea (vernal keratoconjunctivitis) characterized by conjunctival hypertrophy and mucus excess [2084]. It is found in all countries of the world [2085, 2086]. It is often associated with other allergic diseases but the relationship between atopy and vernal keratoconjunctivitis is not demonstrated. Cysteinyl leukotrienes may play a role in this disease since an open study found that Montelukast improved vernal keratoconjunctivitis [2087].
- <u>Atopic conjunctivitis</u> is a keratoconjunctivitis associated with eczematous lesions of the lids and skin [2088].
- <u>Contact lens conjunctivitis</u> is a giant-papillary conjunctivitis observed in hard and soft contact-lens wearers. The prevalence of rhinitis in patients with atopic and contact-lens conjunctivitis is similar in allergic and non-allergic patients [2083].

#### **10.2.** Rhinosinusitis

The role of allergy in sinus disease is still unclear [15, 31, 2089]. It has been speculated that nasal inflammation induced by IgE-mediated mechanisms favors the development of acute and/or chronic sinus disease. A similar inflammation is observed in the nose and sinuses of patients with allergic rhinitis [2090-2095]. Moreover, sinus involvement has been observed by CT-scans in allergic patients during the ragweed pollen season [2096]. Nasal challenge with allergen induces a sinus reaction demonstrated by CT-scans [2097]. Total IgE serum levels correlate with the sinus mucosal thickness on CT-scans [2098]. However, at present, it remains incompletely understood whether and via which mechanisms the presence of allergic inflammation in the nose predisposes the individual to the development of sinus disease.

Epidemiologic studies concerning CRS are inconclusive and, so far, there are no published prospective reports on the incidence of infectious rhinosinusitis in populations with and without clearly-defined allergy. Several epidemiologic studies report a high prevalence of sensitization to inhalant allergens both in acute [2099] and CRS patients [2100, 2101]. Prevalence for sensitization to inhalant allergens is reported in up to 84 % of patients undergoing revision sinus surgery [2102]. Compared to the general population where CRS is estimated to be found in up to 6 % of subjects [2103-2106], patients sensitized to inhalant allergens seem to present more often sinus complaints. On the basis of these epidemiologic observations, one may not however conclude that allergic rhinitis predisposes to the development of CRS as these studies include a large referral bias. A predominance of allergy to perennial versus seasonal allergens was found in chronic sinusitis patients at the time of indication for surgery [2102]. Moreover, epidemiologic studies failed to demonstrate a higher incidence of sinus disease during the pollen season in pollen-sensitized patients [2100].

The role of molds in CRS is unclear. Fungal elements are one of the causative agents of CRS, possibly by an allergic mechanism [2107-2110], but controversy has accumulated concerning the prevalence of fungal CRS [2111, 2112] and benefits of topical amphotericin B therapy are inconsistent [2113, 2114].

Only a limited number of studies examined the effect of anti-allergic therapy in atopic patients with sinus disease. Loratadine, as an adjunctive therapy of atopic patients with acute sinusitis, was found to modestly improve sneezing and nasal obstruction [2115]. It is also noteworthy to mention that half of the allergic patients with a history of sinus surgery and

undergoing immunotherapy believed that surgery alone was not sufficient to completely resolve the recurrent episodes of infection related to their sinus disease [2116]. Well-conducted clinical trials showing beneficial effects of oral  $H_1$ -antihistamines in patients with CRS are lacking.

Notwithstanding the lack of precise insight into mechanisms, symptoms of IgEmediated allergic inflammation should be requested during history taking in patients with CRS, and skin prick tests or specific IgE should be performed in the case of clinical suspicion (evidence D).

In spite of limited evidence regarding the effectiveness of anti-allergic therapy in patients with chronic sinus disease, it would seem logical to add an anti-allergic therapy to the treatment scheme of patients with chronic sinus disease and concomitant allergy.

#### **10.3.** Nasal Polyps

Nasal polyps (NP) are considered as a chronic inflammatory disease of the sinonasal mucosa, being part of the spectrum of chronic sinus pathology [31]. The role of allergy in the generation of nasal polyps is even more unclear than in CRS [15]. Historically, NP were believed to develop as a result of an allergic reaction to an unknown stimulus, giving rise to mucosal swelling and protrusion of the sinonasal mucosa into the nasal cavity. Both allergic rhinitis and NP are characterized by an inflammatory response that shows many similarities [2117]. However, until now, no clear epidemiologic data support a role of allergy in nasal polyposis.

# 10.4. Adenoid hypertrophy

The adenoid, the peripheral lymphoid organ located in the nasopharynx, is part of the Waldeyers ring and contributes to the development of immunity against inhaled microorganisms in early life [2118]. Many triggers, including microbial stimuli such as molds [2119] or external irritants like cigarette smoke [2120], have been related to the enlargement of adenoid tissue and hence to the development of symptoms. Symptoms related to adenoid hypertrophy range from nasal obstruction, *rhinolalia clausa*, open-mouth breathing and snoring to the so-called "adenoid facies". In children, both allergic rhinitis and adenoid hypertrophy may give similar symptoms and therefore need to be differentiated at the time of the consultation.

Little is known about the correlation between allergic rhinitis and adenoid hypertrophy in children. The presence of sensitization to inhalant allergens has been reported to alter the immunology of adenoid tissue. CD1a<sup>+</sup> Langerhans cells and eosinophils are increased in the adenoids of allergic children [2121, 2122]. Similarly, eosinophils, IL-4 and IL-5 mRNA positive cells are increased in the adenoids of atopic children [2122]. Furthermore, atopy is associated with increased numbers of IgE positive cells in adenoids irrespective of the presence of adenoid hypertrophy [2123]. However, no correlation is observed between the atopic state and the degree of adenoid hypertrophy [2124].

Although the role of allergy is unclear in adenoid hypertrophy, allergy should be investigated in children with symptomatic adenoid hypertrophy.

Properly-conducted clinical trials on oral  $H_1$ -antihistamines in allergic children with allergic rhinitis and adenoid hypertrophy are lacking. In contrast, intranasal glucocorticosteroids are capable of reducing adenoid-related symptoms [2125-2127] with no differences in response between atopic and non-atopic children [2125]. In these studies, the effects of intranasal glucocorticosteroids on symptoms of allergic inflammation in the nose and adenoid cannot be dissociated from their anti-inflammatory effects on the adenoid itself. Recently, a short treatment with oral steroids, followed by a prolonged oral  $H_1$ -antihistamine

and intranasal glucocorticosteroid spray therapy, was found to reduce the adenoid volume and associated symptoms [2128].

## **10.5. Tubal Dysfunction**

The Eustachian tube exerts a major function in middle-ear homeostasis via its role in the ventilation and protection of the middle-ear and mucociliary clearance. In line with the concept of global airway allergy, the Eustachian tube lined with respiratory epithelium may be involved in the allergic response following allergen inhalation. The mucosal lining in the tubarian tube, i.e. the nasopharyngeal orifice of the Eustachian tube, contains an allergic inflammatory infiltrate in allergic rhinitis patients [2122]. It is therefore not surprising that allergic inflammation with concomitant mucosal swelling may impair the function of the Eustachian tube. Allergic rhinitis patients have a higher risk of eustachian tube dysfunction assessed by tympanometry than non-allergic subjects, particularly during childhood [2129].

Nasal challenge with house dust mite induces nasal obstruction and tubal dysfunction in allergic individuals [2130]. At present, it remains to be elucidated whether nasal allergen inhalation leads to the deposition of allergens in the tubarian tube with induction of a local allergic response, or whether it gives rise to a systemic immune response involving the airway mucosa at the site of the tubarian tube. Both mechanisms may be involved in the generation of allergic inflammation and swelling of the tubarian tube, ultimately leading to OME in predisposed patients.

# **10.6.** Otitis Media with Effusion (OME)

During the last few decades, the etiologic relationship between rhinitis and otitis media, especially the role of allergy in otitis media with effusion (OME), has been the subject of much controversy [15, 2131, 2132].

Otitis media with effusion is an inflammatory disease of the middle-ear mucosa. Otitis media with effusion remains a significant problem in the pediatric population. It is estimated that more than 80% of all children experience at least one episode of otitis media by the age of 3 and that 40% will have three or more future episodes [2133].

The nose and middle ears are situated in a system of contiguous organs. Both cavities are covered by respiratory mucosa and there is an anatomic continuity between these two cavities through the Eustachian tube. It is not fully understood whether inflammation, infection or obstruction in the nose influence or promote otitis media. There are several controversies with regard to the etiology and pathogenesis of OME, one of which being the relationship between allergy and OME. In view of the concept of global airway allergy, it can be expected that an allergic inflammatory response can also take place in the middle ear. Indeed, all cells and mediators that contribute to allergic inflammation are present in the middle-ear fluid of OME patients [2134, 2135]. The middle-ear fluid of atopic patients with OME contains more eosinophils and IL-4 and IL-5 mRNA-positive cells than in non-atopic patients with OME [2122], suggestive of a role of allergic inflammation in OME. IgE sensitization and respiratory allergy symptoms are independent risk factors for the development of OME [2136].

It is possible that children with atopic dermatitis present a higher prevalence of OME than non-atopic children [2137]. In this large study, asthma and rhinitis were not predisposing factors for the development of OME. However, the number of OME episodes may be greater in atopic children than in non-atopic children [2138]. It remains difficult to interpret epidemiologic data. The enhanced prevalence of allergy in OME patients reported by some authors [2139, 2140] may represent a true finding or may reflect a referral bias.

Many important questions still need to be answered:

• Whether the presence of rhinitis predisposes an individual to the development of otitis.

- Whether nasal dysfunction causes otitis to worsen.
- Whether OME can be cured by treating the underlying nasal or sinus infection.
- Whether the middle-ear mucosa can be targeted directly by allergens.
- It is proposed that children with recurrent OME should be tested for allergy [2141, 2142].

# 10.7. Chronic cough

Cough is one of the most common symptoms for which patients seek medical attention [2143]. The duration of cough and other symptoms and signs are the first steps to assess a patient presenting with cough.

Acute cough can be from viral origin (viral acute rhinosinusitis) but may be the first presentation of more serious diseases such as pneumonia, other respiratory infections, left ventricular failure, asthma or foreign body aspiration syndrome [2143]

Chronic cough is characterized by a duration of over 8 weeks [2143]. It can be caused by a number of factors [1161, 2144-2146], including pos-tinfectious cough [2147], allergic rhinitis [2148-2150], infections, rhinosinusitis [2151], asthma, COPD, gastroesophageal reflux [2152], environmental stimuli such as tobacco smoke or occupational exposure [563, 564], bronchiectasis [2153], interstitial lung diseases, congestive heart failure, drugs (ACE inhibitors, β-blockers) [2154], thyroid disorders and psychogenic cough.

Post-nasal drip secondary to a variety of rhinosinus conditions may be the most common cause of chronic cough [2155, 2156]. Rhinitis is an independent risk factor for both recurrent cough and wheezing during childhood and adulthood [2148-2150]. In patients with seasonal rhinitis, dry cough is common and often the predominant non-nasal symptom with conjunctivitis [1940].

In children, cough may be the only symptom of asthma [2157]. Children with a dry cough during exercise, laughing, playing with friends or in the middle of the night should be tested for asthma [2148, 2158].

Nasal treatment for allergic rhinitis with a steroid spray [2159] as well as oral  $H_1$ antihistamines in adults [2160] have been reported to relieve the cough symptoms in allergic rhinitis patients. In children, oral  $H_1$ -antihistamines have not shown a convincing effect on chronic cough but more data are needed [2161].

Nonprescription treatment for cough in children under 6 years has been recently reviewed by a FDA panel and prohibited [2162].

#### **10.8.** Laryngitis

In patients with dysphonia, the presence of inhalant allergy is considered to be a hidden though common cause of vocal cord dysfunction [2163]. However, the presence of vocal cord edema has not been proved to be induced by allergic inflammation. Furthermore, there is no study showing deleterious effects of allergen provocation on voice quality in atopic patients or beneficial effects of anti-allergic therapy on laryngeal edema or voice quality. Inhaled steroids are often prescribed in patients with allergic asthma and may cause a reversible vocal cord dysfunction [2164].

Oedema of the laryngeal mucosa, laryngeal erythema and candidiasis may all be found in a minority of patients treated with inhaled glucocorticosteroids [2165], but is not reported after the prolonged use of nasal steroid spray.

#### **10.9.** Gastroesophagal reflux (GER)

Gastroesophagal reflux may masquerade as chronic rhinosinusitis [2166, 2167]. Associations have been reported between GER and a variety of upper and lower respiratory tract conditions but not with allergic rhinitis [2168].

# 11. Rhinitis in children

Allergic rhinitis is the most prevalent chronic allergic disease in children [948]. Although it is not life threatening, it can have a significantly detrimental effect on a child's quality of life, and it may exacerbate a number of common co-morbidities, including asthma and sinusitis [2169].

There are many different causes of rhinitis in children and approximately 50% are induced by allergy [2170]. Allergic and non-allergic rhinitis are often difficult to differentiate based on symptoms.

As for asthma, pre-school and older children should be considered separately.

## 11.1. The atopic march

The sequential development of allergic disease manifestations during early childhood is often referred to as the atopic march [2171]. Various epidemiologic and birth-cohort studies have begun to elucidate the evolution of allergic disease manifestations and to identify populations at risk for disease [5, 2172-2174].

Atopic dermatitis is one of the most common skin disorders seen in infants and children. Usually it has its onset during the first 6 months of life [2175]. Epicutaneous sensitization has been thought to be responsible, with a subsequent migration of sensitized T-cells into the nose and airways, causing upper and lower airway disease [2175]. Although atopy is associated to some degree with atopic dermatitis, its importance is not likely to be a simple cause-and-effect relationship, especially at a population level [2176]. The prognosis of atopic dermatitis in infants is usually good, but the risk of developing asthma and allergic rhinitis is high [2177]. However, the risk of subsequent childhood asthma may not be increased in children with early atopic dermatitis who are not also early wheezers, suggesting a co-manifestation of phenotypes in many patients rather than a progressive atopic march [2178]. These associations may differ depending on the populations studied [2179]

A proportion of childhood eczema, rhinitis and asthma is non-atopic [2180]. Not all children with an allergic sensitization will have atopic disease or develop symptoms after exposure to an allergen [1362, 2181].

Inhalant allergens may have an important role in the early development of asthma [2182]. However, in pre-school children, in contrast to older children, allergic rhinitis occurs at the same time or later than asthma [1049].

Food allergy is often the first sensitization to develop [885]. Long-lasting sensitization to food precedes inhalant allergen sensitization [2183]. Sensitization to indoor allergens occurs early in life [1843]. Pollen sensitization appears to occur later but, at 4 years of age, up to 11% of children may be sensitized [381]. In general, at least 2 seasons of pollen allergen exposure are needed before allergic rhinitis clinically manifests [1049].

## 11.2. Epidemiology of rhinitis in pre-school children

Despite the recognition that rhinitis affects an increasing proportion of pre-school children, at present there is a paucity of epidemiological data regarding its distribution, risk factors and natural history. Moreover, infectious rhinitis is extremely common and, like allergic rhinitis [2184], may be associated with episodic wheezing.

The prevalence of respiratory allergies in children from birth to 4 years is 6% while 4% are reported to have rhinitis [2185]. Although the prevalence of rhinitis increases later in life [2186], the exact prevalence in pre-school children is still a matter of discussion. By the age of 6, physician-diagnosed allergic rhinitis may occur in more than 40% of children [721].

Risk factors for rhinitis in this age group are unclear and may include environmental tobacco smoke and molds [251, 1900, 2187-2189]. Birth cohort studies have shown that inhalant allergens are commonly involved [381, 1843, 2190, 2191].

# 11.3. Diagnosis

#### 11.3.1. Pre-school children

Allergic rhinitis and asthma in pre-school children are difficult to diagnose, the symptoms being often confused with those of infectious rhinitis. However, symptoms that persist longer than 2 weeks should prompt a search for a cause other than infection.

In addition to sneezing, nasal itching, discharge and congestion, children with moderate/severe allergic rhinitis may develop noisy breathing, repeated throat clearing, snoring and loss of olfaction and taste. They may also have facial manifestations of obstructed breathing, including a gaping mouth, chapped lips, hypertrophied gingival mucosa, a long face, dental malocclusions and allergic shiners. They also frequently have evidence of itching, e.g. an allergic salute or an allergic transverse nasal crease [2192]. Their anterior cervical nodes may be enlarged. They may have malaise and disturbed nocturnal sleep with subsequent daytime fatigue. Co-morbidities associated with allergic rhinitis in children include asthma, atopic dermatitis/eczema, allergic conjunctivitis, chronic sinusitis and otitis media with residual or persistent effusion.

The medical history is extremely important as it can reveal information regarding a family history of atopy and the progression of atopy in the child.

Skin prick tests can be performed and interpreted reliably early in life [1223]. If positive, they yield evidence about atopy and about sensitization to allergens. However, as for any other test, the results should be correlated with the child's symptoms and signs of allergic disease.

Although the presence of circulating IgE antibodies, as detected by Phadiatop Paediatric, could predict the development of atopic diseases during childhood, the usefulness of the test in pre-school children was limited by its low sensitivity (22-47%) [2193]. The recently developed Phadiatop-infant may be more sensitive and specific [2194, 2195]. Positive tests to food allergens in infancy predict a later development of sensitization to inhaled allergens [2196]. The combination of Phadiatop and fx5 (mixed food allergy muli-IgE test) has been reported to be a reliable way of identifying the likelihood of allergic diseases in young children [1363]. However, food allergens do not trigger allergic rhinitis as such, although they may trigger nasal symptoms during full-blown severe acute allergic reactions (anaphylaxis) to food.

Elevated levels of total-serum IgE are not a good predictor of atopy since levels vary widely with age [2197]. Elevated total IgE levels are more likely to correlate with the presence of atopic dermatitis than with allergic rhinitis.

The differential diagnosis of allergic rhinitis in pre-school children includes infectious rhinitis (usually viral), foreign body, anatomic variations including unilateral choanal atresia, benign tumors including dermoid cysts and meningoencephalocele, cystic fibrosis and related diseases [2198-2200], mucociliary dyskinesia [1340, 2201] or nasal obstruction induced by adenoid hypertrophy [15].

#### 11.3.2. Older children

The differential diagnosis of allergic rhinitis in older children also includes trauma, (septal hematoma, fractured nasal bones, synechiae), cerebrospinal fluid rhinorrhea, nasal glioma and *rhinitis medicamentosa* involving the overuse of topical decongestants. Nasal polyps are uncommon in children, and if they are observed, the diagnosis of cystic fibrosis must be considered.

#### 11.4. Treatment

#### **11.4.1. Pharmacologic Treatment**

Allergic rhinitis and asthma are common in pre-school and school children and are often associated with each other [2202]. Children on asthma-controller therapy are frequent users of rhinitis medications [2203]. It is therefore important to carefully assess the side effects of treatments, especially in children with both rhinitis and asthma [2204].

The principles of treatment are the same in children as in adults, but special care has to be taken to avoid the side effects which are unique to this age group [59, 2170, 2205]. Dosages have to be adapted and some special considerations have to be followed. Caution is necessary because of the young age of the patient. Among the most important aspects to consider are the cognitive functions of pre-school and school children in relation to the general malaise caused by rhinitis and in relation to the antihistamine treatment (see below).

Many medications currently prescribed for children with allergic rhinitis lack full pediatric approval. Physicians should bear in mind that developmental changes in infancy and childhood can profoundly affect medication absorption, distribution, metabolism and excretion, and that this, in turn, can affect optimal dosing, efficacy and safety. Of particular concern are any adverse effects involving impairment of growth or cognitive development. Pediatric doses of some medications used in allergic rhinitis treatment (e.g. certain older H<sub>1</sub>-antihistamines and intranasal glucocorticosteroids) are based on extrapolations from clinical pharmacology data obtained in adults and teenagers rather than on data obtained directly from studies in children, especially pre-school children, and in infants. Few drug treatments have been tested in infants and pre-school children [2206-2209]. In the future, it is hoped that package inserts for the medications used in allergic rhinitis treatment will include fewer disclaimers that "safety and efficacy are not established in infants and young children".

Oral glucocorticosteroids and depot-preparations should be avoided in the treatment of rhinitis in young children. Intranasal glucocorticosteroids are the most effective treatment of allergic rhinoconjunctivitis but the parental fear of systemic side effects, which are actually uncommon, should always be considered. Modern intranasal glucocorticosteroids are much less absorbed (bioavailability <30%) and the minimal dose needed to control symptoms should be used. Intranasal glucocorticosteroids with high bioavailability such as betamethasone should not be used in children [2210]. One special concern is the effect upon growth and growth velocity. In children, the rate of growth was slightly reduced in those regularly treated with intranasal beclomethasone over one year [1575]. However, no growth retardation has been observed in one-year follow up studies of children treated with fluticasone propionate, mometasone furoate or triamcinolone acetonide [1578, 1579, 2211-2213]. Moreover, a pharmacokinetic/pharmacodynamic model of the relationship between systemic corticosteroid exposure and growth velocity has been proposed and may be useful for the development of future local glucocorticosteroids. On the other hand, oral and depot glucocorticosteroid preparations have a clear effect on growth and growth velocity [2214].

Intranasal glucocorticosteroids do not appear to have an effect on the hypothalamicpituitary-adrenal-axis in children [1570, 2215, 2216] Concurrent use of intranasal and orally inhaled fluticasone propionate does not affect hypothalamic-pituitary-adrenal-axis function [1568].

Mometasone furoate is available for children of 2 years and over [2217-2219]. Fluticasone propionate is approved for children aged 4 years and older [2213, 2220-2222], and other intranasal glucocorticosteroids may be used in children over the age of 5 years [1518, 2223, 2224]

The use of H<sub>1</sub>-antihistamines is important for the treatment of allergic rhinitis in children, as many young children particularly prefer an oral medication to an intranasal medication. First-generation oral H<sub>1</sub>-antihistamines have central nervous system side effects, including sedation and fatigue [116, 2225]. Paradoxical hyperactivity, insomnia and irritability may also occur in infants and very young children. Seasonal allergic rhinitis per se may affect learning ability and concentration. Treatment with first-generation H<sub>1</sub>antihistamines often had a further reducing effect upon cognitive function [2226]. However, use of the newer H<sub>1</sub>-antihistamines counteracts the feeling of malaise caused by allergic rhinitis and may improve learning ability in allergic rhinitis. Pharmacokinetic studies of the second-generation H<sub>1</sub>-antihistamines have been performed in children, but few studies have been carried out on infants [116, 2227-2229]. Interactions with the cytochrome P450 may reduce the metabolism of the H<sub>1</sub>-antihistamines metabolized in the liver. Macrolide antibiotics, commonly used in children, may have this effect. Cetirizine, fexofenadine and levocetirizine are not metabolized to any extent. Moreover, while many second-generation H<sub>1</sub>-antihistamines are effective and safe in the treatment of allergic rhinitis in children, only cetirizine, levocetirizine and loratadine have been studied for long-term efficacy and safety in children [2230-2232].

The use of intranasal  $H_1$ -antihistamines like levocabastine and azelastine has the benefits of rapid onset of action and few adverse effects. However, although there is a beneficial effect upon symptoms in the organ to which they are administered, they usually have little effect elsewhere. These drugs are useful in children with symptoms limited to the nose or the eyes [1408, 2233, 2234].

In some countries, montelukast is approved for the treatment of allergic rhinitis in children.

The pharmacokinetics of oral decongestants appear to differ in children and adults and more studies are needed [1611]. These medications may also contribute to hyperactivity and insomnia in children.

Disodium cromoglycate has been one of the common drugs used for allergic rhinoconjunctivitis in children but it is less effective than intranasal glucocorticosteroids or  $H_1$ -antihistamines [2233, 2235, 2236]. It is important to note that in children, these drugs are free from side effects. However, a dosage of 4-6 times a day is required for cromoglycate and compliance with treatment is often difficult. Nedocromil sodium has been studied in children [2237] but has gained less acceptance.

Nasal saline drops or spray can help to clear the nose before eating or sleeping [2238].

Pharmacologic management must be individualized and polypharmacy must be avoided [2148, 2239].

#### 11.4.2. Non-Pharmacologic Treatment

Non-pharmacologic treatment of allergic rhinitis in children involves education of the family and the child about the recurrent or persistent nature of the disease, and about avoidance of allergen triggers and respiratory tract irritants, the most important of which is tobacco smoke.

Allergen-specific subcutaneous immunotherapy is not usually recommended before the age of 5 years because of safety concerns, as well as difficulties in performing serial injections of allergens over months or years [2240]. There are some preliminary studies of sublingual immunotherapy in pre-school children [1721, 2241]. It has been found to be safe but its efficacy needs to be tested further. Moreover, sublingual immunotherapy in young children with allergic rhinitis may possibly prevent a later development of asthma.

# Acknowledgements:

The authors thank Ms Anna Bedbrook for editorial assistance

init sensor

# References

- [1] Bousquet J, Van Cauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol. 2001;108(5 Suppl):S147-334
- [2] Hansel F. Clinical and histopathologic studies of the nose and sinuses in allergy. J Allergy. 1929;1:43-70.
- [3] Bostock J. Case of a periodical affection of the eyes and the chest. Med Surg Trans London. 1819;xiv:437-46.
- [4] Emanuel MB. Hay fever, a post industrial revolution epidemic: a history of its growth during the 19th century. Clin Allergy. 1988 May;18(3):295-304
- Sears MR, Burrows B, Herbison GP, Holdaway MD, [5] Flannery EM. Atopy in childhood. II. Relationship to airway responsiveness, hay fever and asthma. Clin Exp Allergy. 1993 Nov;23(11):949-56.
- Van Cauwenberge P, Watelet JB, Van Zele T, Bousquet [6] J, Burney P, Zuberbier T. Spreading excellence in allergy and asthma: the GA2 LEN (Global Allergy and Asthma European Network) project. Allergy. 2005 Jul;60(7):858-64.
- Pheobus P. Hay asthma. Lancet. 1859;ii:655. [7]
- [8] Blackley C. Experimental researches on the causes and nature of catarrhus aestivus. Lancet. 1873;ii:231-2.
- International Consensus Report on Diagnosis and Management of Rhinitis. International Rhinitis [9] Management Working Group. Allergy. 1994;49(19 Suppl):1-34
- [10] Dykewicz MS, Fineman S. Executive Summary of Joint Task Force Practice Parameters on Diagnosis and Management of Rhinitis. Ann Allergy Asthma Immunol. 1998;81(5 Pt 2):463-8.
- [11] Van-Cauwenberge P, Bachert C, Passalacqua G, Bousquet J, Canonica G, Durham S, et al. Consensus statement on the treatment of allergic rhinitis. EAACI Position paper. Allergy. 2000;55:116-34.
- [12] Shekelle PG, Woolf SH, Eccles M, Grimshaw J. Clinical guidelines: developing guidelines. Bmj. 1999;318(7183):593-6.
- Bonini S. Allergic conjunctivitis: the forgotten disease. [13] Chem Immunol Allergy. 2006;91:110-20.
- [14] Togias A. Rhinitis and asthma: evidence for respiratory system integration. J Allergy Clin Immunol. 2003 Jun;111(6):1171-83; quiz 84.
- Hellings PW, Fokkens WJ. Allergic rhinitis and its [15] impact on otorhinolaryngology. Allergy. 2006 Jun;61(6):656-64.
- [16] Fokkens W, van Drunen CM. Nose and lung, two of a
- kind? Allergy. 2006 Jun;61(6):653-5. Lenfant C. Introduction. In: Corren J, Togias A, Bousquet J, eds. *Upper and Lower Respiratory Disease* [17] Lung Biology in Health and Disease C Lenfant editor Vol 181. NY: Marcel Dekker 2004:iii-iv.
- Bousquet J, Vignola AM, Demoly P. Links between [18]
- rhinitis and asthma. Allergy. 2003 Aug;58(8):691-706. Bousquet J, Jacquot W, Vignola AM, Bachert C, Van Cauwenberge P. Allergic rhinitis: a disease remodeling [19] the upper airways? J Allergy Clin Immunol. 2004 Jan;113(1):43-9
- Bachert C, Vignola AM, Gevaert P, Leynaert B, Van [20] Cauwenberge P, Bousquet J. Allergic rhinitis, rhinosinusitis, and asthma: one airway disease. Immunol Allergy Clin North Am. 2004 Feb;24(1):19-43.
- [21] Price D, Bond C, Bouchard J, Costa R, Keenan J, Levy ML, et al. International Primary Care Respiratory Group (IPCRG) Guidelines: management of allergic rhinitis. Prim Care Respir J. 2006 Feb;15(1):58-70.
- Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, [22] Flottorp S, et al. Grading quality of evidence and strength of recommendations. Bmj. 2004 Jun 19;328(7454):1490.

- [23] Schunemann HJ, Fretheim A, Oxman AD. Improving the use of research evidence in guideline development: 13. Applicability, transferability and adaptation. Health Res Policy Syst. 2006;4:25.
- [24] Custovic A, Wijk RG. The effectiveness of measures to change the indoor environment in the treatment of allergic rhinitis and asthma. ARIA update (in collaboration with GA(2)LEN). Allergy. 2005 Sep;60(9):1112-5.
- Passalacqua G, Bousquet PJ, Carlsen KH, Kemp J, [25] Lockey RF, Niggemann B, et al. ARIA update: I--Systematic review of complementary and alternative medicine for rhinitis and asthma. J Allergy Clin Immunol. 2006 May;117(5):1054-62.
- Bousquet J, van Cauwenberge P, Ait Khaled N, Bachert [26] C, Baena-Cagnani CE, Bouchard J, et al. Pharmacologic and anti-IgE treatment of allergic rhinitis ARIA update (in collaboration with GALEN). Allergy. 2006 Sep;61(9):1086-96.
- Bonini S, Bonini M, Bousquet J, Brusasco V, Canonica [27] GW, Carlsen KH, et al. Rhinitis and asthma in athletes: an ARIA document in collaboration with GA2LEN. Allergy. 2006 Jun;61(6):681-92.
- [28] Passalacqua G, Durham SR. Allergic rhinitis and its impact on asthma update: allergen immunotherapy. J Allergy Clin Immunol. 2007 Apr;119(4):881-91.
- [29] Bousquet J, Dahl R, Khaltaev N. Global alliance against respiratory chronic diseases. Allergy. 2007 Mar;62(3):216-23.
- Fokkens WJ. Thoughts on the pathophysiology of [30] nonallergic rhinitis. Curr Allergy Asthma Rep. 2002 Mar;2(3):203-9
- Fokkens W, Lund V, Bachert C, Clement P, Helllings P, [31] Holmstrom M, et al. EAACI position paper on rhinosinusitis and nasal polyps executive summary. Allergy. 2005 May;60(5):583-601.
- [32] Ciprandi G, Cirillo I, Klersy C, Marseglia GL, Caimmi D, Vizzaccaro A. Nasal obstruction is the key symptom in hay fever patients. Otolaryngol Head Neck Surg. 2005 Sep;133(3):429-35.
- [33] Sibbald B, Rink E. Epidemiology of seasonal and perennial rhinitis: clinical presentation and medical history. Thorax. 1991;46(12):895-901
- [34] Lindberg S, Malm L. Comparison of allergic rhinitis and vasomotor rhinitis patients on the basis of a computer questionnaire. Allergy. 1993 Nov;48(8):602-7.
- Agius AM, Cordina M, Calleja N. The role of atopy in [35] Maltese patients with chronic rhinitis. Clin Otolaryngol Allied Sci. 2004 Jun;29(3):247-53.
- [36] Van Hoecke H, Vastesaeger N, Dewulf L, Sys L, van Cauwenberge P. Classification and management of allergic rhinitis patients in general practice during pollen season. Allergy. 2006 Jun;61(6):705-11.
- Doyle WJ, Skoner DP, Seroky JT, Fireman P. [37] Reproducibility of the effects of intranasal ragweed challenges in allergic subjects. Ann Allergy Asthma Immunol. 1995 Feb;74(2):171-6.
- Knutson JW, Slavin RG. Sinusitis in the aged. Optimal [38] management strategies. Drugs Aging. 1995;7(4):310-6.
- [39] Wreesmann VB, Fokkens WJ, Knegt PP. Refractory chronic sinusitis: evaluation of symptom improvement after Denker's procedure. Otolaryngol Head Neck Surg. 2001 Nov;125(5):495-500.
- [40] Molgaard E, Thomsen SF, Lund T, Pedersen L, Nolte H, Backer V. Differences between allergic and nonallergic rhinitis in a large sample of adolescents and adults. Allergy. 2007 Jun 18.

- [41] Charpin D, Sibbald B, Weeke E, Wuthrich B. Epidemiologic identification of allergic rhinitis. Allergy. 1996;51(5):293-8.
- [42] Sibbald B, Strachan D. Epidemiology of rhinitis. In: Busse W, Holgate S, eds. Asthma and rhinitis. London UK: Blackwell Scientific 1995:32-43.
- [43] Medical Research Council's Committee on the Aetiology of Chronic Bronchitis. Standardized questionnaire on respiratory symptoms. bmj. 1960;2:1665.
- [44] Brille D, Bolt V, Greve L, Minette A, Sartorelli E. European Coal and Steel Community (ECSC): high authority questionnaire on the study of chronic bronchitis and emphysemea. Luxembourg: ESCS 1962.
- [45] Burney PG, Luczynska C, Chinn S, Jarvis D. The European Community Respiratory Health Survey. Eur Respir J. 1994;7(5):954-60.
- [46] Richards S, Thornhill D, Roberts H, Harries U. How many people think they have hay fever, and what they do about it. Br J Gen Pract. 1992;42(360):284-6.
- [47] Zacharasiewicz A, Douwes J, Pearce N. What proportion of rhinitis symptoms is attributable to atopy? J Clin Epidemiol. 2003 Apr;56(4):385-90.
- [48] Wang DY, Niti M, Smith JD, Yeoh KH, Ng TP. Rhinitis: do diagnostic criteria affect the prevalence and treatment? Allergy. 2002 Feb;57(2):150-4.
- [49] Ng ML, Warlow RS, Chrishanthan N, Ellis C, Walls R. Preliminary criteria for the definition of allergic rhinitis: a systematic evaluation of clinical parameters in a disease cohort (I). Clin Exp Allergy. 2000 Sep;30(9):1314-31.
- [50] Ng ML, Warlow RS, Chrishanthan N, Ellis C, Walls RS. Preliminary criteria for the definition of allergic rhinitis: a systematic evaluation of clinical parameters in a disease cohort (II). Clin Exp Allergy. 2000 Oct;30(10):1417-22.
- [51] Annesi-Maesano I, Didier A, Klossk J, Guillet G, Chanal I, Matthieu J, et al. Development and validation of a diagnostic criteria score for allergic rhinitis for use in epidemiological studies. Hospital validation. Eur Respir J. 1998;10:143S.
- [52] Pariente PD, LePen C, Los F, Bousquet J. Quality-of-life outcomes and the use of antihistamines in a French national population-based sample of patients with perennial rhinitis. Pharmacoeconomics. 1997;12(5):585-95.
- [53] Tollerud DJ, O'Connor GT, Sparrow D, Weiss ST. Asthma, hay fever, and phlegm production associated with distinct patterns of allergy skin test reactivity, eosinophilia, and serum IgE levels. The Normative Aging Study. Am Rev Respir Dis. 1991;144(4):776-81.
- [54] Vervloet D, Haddi E, Tafforeau M, Lanteaume A, Kulling G, Charpin D. Reliability of respiratory symptoms to diagnose atopy. Clin Exp Allergy. 1991;21(6):733-7.
- [55] Droste JH, Kerhof M, de Monchy JG, Schouten JP, Rijcken B. Association of skin test reactivity, specific IgE, total IgE, and eosinophils with nasal symptoms in a community-based population study. The Dutch ECRHS Group. J Allergy Clin Immunol. 1996;97(4):922-32.
- [56] Tschopp JM, Sistek D, Schindler C, Leuenberger P, Perruchoud AP, Wuthrich B, et al. Current allergic asthma and rhinitis: diagnostic efficiency of three commonly used atopic markers (IgE, skin prick tests, and Phadiatop). Results from 8329 randomized adults from the SAPALDIA Study. Swiss Study on Air Pollution and Lung Diseases in Adults. Allergy. 1998;53(6):608-13.
- [57] Annesi-Maesano I. Epidemiologic evidence for the relationship between upper and lower airway disease. In: Corren I, ed. *Relationship between the upper and lower airway disease*. New York: Marcel Dekker 1999:in press.
- [58] Dykewicz MS. 7. Rhinitis and sinusitis. J Allergy Clin Immunol. 2003 Feb;111(2 Suppl):S520-9.
- [59] van Cauwenberge P, Bachert C, Passalacqua G, Bousquet J, Canonica GW, Durham SR, et al. Consensus statement on the treatment of allergic rhinitis. European Academy of Allergology and Clinical Immunology. Allergy. 2000 Feb;55(2):116-34.

- [60] Bucholtz GA, Lockey RF, Wunderlin RP, Binford LR, Stablein JJ, Serbousek D, et al. A three-year aerobiologic pollen survey of the Tampa Bay area, Florida. Ann Allergy. 1991;67(5):534-40.
- [61] D'Amato G, Lobefalo G. Allergenic pollens in the southern Mediterranean area. J Allergy Clin Immunol. 1989;83(1):116-22.
- [62] Bauchau V, Durham SR. Prevalence and rate of diagnosis of allergic rhinitis in Europe. Eur Respir J. 2004 Nov;24(5):758-64.
- [63] Bauchau V, Durham SR. Epidemiological characterization of the intermittent and persistent types of allergic rhinitis. Allergy. 2005 Mar;60(3):350-3.
- [64] Ciprandi G, Buscaglia S, Pesce G, Pronzato C, Ricca V, Parmiani S, et al. Minimal persistent inflammation is present at mucosal level in patients with asymptomatic rhinitis and mite allergy. J Allergy Clin Immunol. 1995;96(6 Pt 1):971-9.
- [65] Platts-Mills TA, Hayden ML, Chapman MD, Wilkins SR. Seasonal variation in dust mite and grass-pollen allergens in dust from the houses of patients with asthma. J Allergy Clin Immunol. 1987;79(5):781-91.
- [66] Passalacqua G, Albano M, Fregonese L, Riccio A, Pronzato C, Mela GS, et al. Randomised controlled trial of local allergoid immunotherapy on allergic inflammation in mite-induced rhinoconjunctivitis. Lancet. 1998 Feb 28;351(9103):629-32.
- [67] Bousquet J, Annesi-Maesano I, Carat F, Leger D, Rugina M, Pribil C, et al. Characteristics of intermittent and persistent allergic rhinitis: DREAMS study group. Clin Exp Allergy. 2005 Jun;35(6):728-32.
- [68] Arbes SJ, Jr., Gergen PJ, Elliott L, Zeldin DC. Prevalences of positive skin test responses to 10 common allergens in the US population: results from the third National Health and Nutrition Examination Survey. J Allergy Clin Immunol. 2005 Aug;116(2):377-83.
- [69] Ciprandi G, Cirillo I, Vizzaccaro A, Tosca M, Passalacqua G, Pallestrini E, et al. Seasonal and perennial allergic rhinitis: is this classification adherent to real life? Allergy. 2005 Jul;60(7):882-7.
- [70] Bruce CA, Norman PS, Rosenthal RR, Lichtenstein LM. The role of ragweed pollen in autumnal asthma. J Allergy Clin Immunol. 1977;59(6):449-59.
- [71] Kirmaz C, Yuksel H, Bayrak P, Yilmaz O. Symptoms of the olive pollen allergy: do they really occur only in the pollination season? J Investig Allergol Clin Immunol. 2005;15(2):140-5.
- [72] Connell JT. Quantitative intranasal pollen challenges. 3. The priming effect in allergic rhinitis. J Allergy. 1969;43(1):33-44.
- [73] Wachs M, Proud D, Lichtenstein LM, Kagey-Sobotka A, Norman PS, Naclerio RM. Observations on the pathogenesis of nasal priming. J Allergy Clin Immunol. 1989;84(4 Pt 1):492-501.
- [74] Juliusson S, Bende M. Priming effect of a birch pollen season studied with laser Doppler flowmetry in patients with allergic rhinitis. Clin Allergy. 1988;18(6):615-8.
- [75] Naito K, Ishihara M, Senoh Y, Takeda N, Yokoyama N, Iwata S. Seasonal variations of nasal resistance in allergic rhinitis and environmental pollen counts. II: Efficacy of preseasonal therapy. Auris Nasus Larynx. 1993;20(1):31-8.
- [76] Koh YY, Lim HS, Min KU, Min YG. Airways of allergic rhinitics are 'primed' to repeated allergen inhalation challenge. Clin Exp Allergy. 1994 Apr;24(4):337-46.
- [77] Assing K, Bodtger U, Poulsen LK, Malling HJ. Grass pollen symptoms interfere with the recollection of birch pollen symptoms - a prospective study of suspected, asymptomatic skin sensitization. Allergy. 2007 Apr;62(4):373-7.
- [78] Knani J, Campbell A, Enander I, Peterson CG, Michel FB, Bousquet J. Indirect evidence of nasal inflammation assessed by titration of inflammatory mediators and enumeration of cells in nasal secretions of patients with chronic rhinitis. J Allergy Clin Immunol. 1992;90(6 Pt 1):880-9.

- [79] Ricca V, Landi M, Ferrero P, Bairo A, Tazzer C, Canonica G, et al. Minimal persistent inflammation is also present in patients with seasonal allergic rhinitis. J Allergy Clin Immunol. 1999;104:in press.
- [80] Riediker M, Monn C, Koller T, Stahel WA, Wuthrich B. Air pollutants enhance rhinoconjunctivitis symptoms in pollen-allergic individuals. Ann Allergy Asthma Immunol. 2001 Oct;87(4):311-8.
- [81] Demoly P, Allaert FA, Lecasble M, Bousquet J. Validation of the classification of ARIA (allergic rhinitis and its impact on asthma). Allergy. 2003 Jul;58(7):672-5.
- [82] Bachert C, van Cauwenberge P, Olbrecht J, van Schoor J. Prevalence, classification and perception of allergic and nonallergic rhinitis in Belgium. Allergy. 2006 Jun;61(6):693-8.
- [83] Todo-Bom A, Loureiro C, Almeida MM, Nunes C, Delgado L, Castel-Branco G, et al. Epidemiology of rhinitis in Portugal: evaluation of the intermittent and the persistent types. Allergy. 2007 Sep;62(9):1038-43.
- [84] Bousquet J, Neukirch F, Bousquet PJ, Gehano P, Klossek JM, Le Gal M, et al. Severity and impairment of allergic rhinitis in patients consulting in primary care. J Allergy Clin Immunol. 2006 Jan;117(1):158-62.
- [85] Walls RS, Heddle RJ, Tang ML, Basger BJ, Solley GO, Yeo GT. Optimising the management of allergic rhinitis: an Australian perspective. Med J Aust. 2005 Jan 3:182(1):28-33.
- [86] Bachert C. Persistent rhinitis allergic or nonallergic? Allergy. 2004;59 Suppl 76:11-5; discussion 5.
- [87] Leynaert B, Neukirch C, Liard R, Bousquet J, Neukirch F. Quality of life in allergic rhinitis and asthma. A population-based study of young adults. Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 1):1391-6.
- [88] Bousquet J, Bullinger M, Fayol C, Marquis P, Valentin B, Burtin B. Assessment of quality of life in patients with perennial allergic rhinitis with the French version of the SF-36 Health Status Questionnaire. J Allergy Clin Immunol. 1994;94(2 Pt 1):182-8.
- [89] Nascimento Silva M, Naspitz C, Sole D. Evaluation of quality of life in children and teenagers with allergic rhinitis: adaptation and validation of the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ). Allergol Immunopathol (Madr). 2001 Jul-Aug;29(4):111-8.
- [90] Juniper EF, Guyatt GH, Dolovich J. Assessment of quality of life in adolescents with allergic rhinoconjunctivitis: development and testing of a questionnaire for clinical trials. J Allergy Clin Immunol. 1994;93(2):413-23.
- [91] Berdeaux G, Hervie C, Smajda C, Marquis P. Parental quality of life and recurrent ENT infections in their children: development of a questionnaire. Rhinitis Survey Group. Qual Life Res. 1998;7(6):501-12.
- [92] Roberts G, Hurley C, Lack G. Development of a qualityof-life assessment for the allergic child or teenager with multisystem allergic disease. J Allergy Clin Immunol. 2003 Mar;111(3):491-7.
- [93] Juniper EF, Thompson AK, Ferrie PJ, Roberts JN. Validation of the standardized version of the Rhinoconjunctivitis Quality of Life Questionnaire. J Allergy Clin Immunol. 1999 Aug;104(2 Pt 1):364-9.
- [94] Santos CB, Pratt EL, Hanks C, McCann J, Craig TJ. Allergic rhinitis and its effect on sleep, fatigue, and daytime somnolence. Ann Allergy Asthma Immunol. 2006 Nov;97(5):579-86; quiz 86-9, 671.
- [95] Craig TJ, Teers S, Lehman EB, Chinchilli VM, Zwillich C. Nasal congestion secondary to allergic rhinitis as a cause of sleep disturbance and daytime fatigue and the response to topical nasal corticosteroids. J Allergy Clin Immunol. 1998;101(5):633-7.
- [96] Craig TJ, Mende C, Hughes K, Kakumanu S, Lehman EB, Chinchilli V. The effect of topical nasal fluticasone on objective sleep testing and the symptoms of rhinitis, sleep, and daytime somnolence in perennial allergic rhinitis. Allergy Asthma Proc. 2003 Jan-Feb;24(1):53-8.

- [97] Craig TJ, McCann JL, Gurevich F, Davies MJ. The correlation between allergic rhinitis and sleep disturbance. J Allergy Clin Immunol. 2004 Nov;114(5 Suppl):S139-45.
- [98] Zwillich CW, Pickett C, Hanson FN, Weil JV. Disturbed sleep and prolonged apnea during nasal obstruction in normal men. Am Rev Respir Dis. 1981;124(2):158-60.
- [99] Olsen KD, Kern EB, Westbrook PR. Sleep and breathing disturbance secondary to nasal obstruction. Otolaryngol Head Neck Surg. 1981;89(5):804-10 // \*
- [100] McNicholas WT, Tarlo S, Cole P, Zamel N, Rutherford R, Griffin D, et al. Obstructive apneas during sleep in patients with seasonal allergic rhinitis. Am Rev Respir Dis. 1982;126(4):625-8.
- [101] Houston D, Williams AJ, Finberg S, Santiago S, Wald R. Disturbed sleep and prolonged apnea during nasal obstruction in normal men [letter]. Am Rev Respir Dis. 1982;125(4):484-5.
- [102] Lavie P, Gertner R, Zomer J, Podoshin L. Breathing disorders in sleep associated with "microarousals' in patients with allergic rhinitis. Acta Otolaryngol. 1981;92(5-6):529-33.
- [103] Young T, Finn L, Kim H. Nasal obstruction as a risk factor for sleep-disordered breathing. The University of Wisconsin Sleep and Respiratory Research Group. J Allergy Chin Immunol. 1997;99(2):S757-62.
- [104] Gosepath J, Amedee RG, Romantschuck S, Mann WJ. Breathe Right nasal strips and the respiratory disturbance index in sleep related breathing disorders. Am J Rhinol. 1999;13(5):385-9.
- [105] Passalacqua G, Bousquet J, Bachert C, Church MK, Bindsley-Jensen C, Nagy L, et al. The clinical safety of H1-receptor antagonists. An EAACI position paper. Allergy. 1996;51(10):666-75.
- [106] Casale TB, Blaiss MS, Gelfand E, Gilmore T, Harvey PD, Hindmarch I, et al. First do no harm: managing antihistamine impairment in patients with allergic rhinitis. J Allergy Clin Immunol. 2003 May;111(5):S835-42.
- [107] Kushida CA, Guilleminault C, Clerk AA, Dement WC. Nasal obstruction and obstructive sleep apnea: a review. Allergy Asthma Proc. 1997;18(2):69-71.
- [108] Rubinstein I. Nasal inflammation in patients with obstructive sleep apnea. Laryngoscope. 1995;105(2):175-7.
- [109] Houser SM, Mamikoglu B, Aquino BF, Moinuddin R, Corey JP. Acoustic rhinometry findings in patients with mild sleep apnea. Otolaryngol Head Neck Surg. 2002 May;126(5):475-80.
- [110] Kramer MF, De La Chaux R, Dreher A, Pfrogner E, Rasp G. Allergic rhinitis does not constitute a risk factor for obstructive sleep apnea syndrome. Acta Otolaryngol. 2001 Jun;121(4):494-9.
- [111] Leger D, Annesi-Maesano I, Carat F, Rugina M, Chanal I, Pribil C, et al. Allergic Rhinitis and Its Consequences on Quality of Sleep: An Unexplored Area. Arch Intern Med. 2006 Sep 18;166(16):1744-8.
- [112] Blanc PD, Trupin L, Eisner M, Earnest G, P PK, Israel L, et al. The work impact of asthma and rhinitis. Findings from a population-based survey. J Clin Epidemiol. 2001;54(6):610-8.
- [113] Demoly P, Allaert FA, Lecasble M. ERASM, a pharmacoepidemiologic survey on management of intermittent allergic rhinitis in every day general medical practice in France. Allergy. 2002 Jun;57(6):546-54.
- [114] Blaiss MS. Allergic rhinitis and impairment issues in schoolchildren: a consensus report. Curr Med Res Opin. 2004 Dec;20(12):1937-52.
- [115] Vuurman EF, van-Veggel LM, Uiterwijk MM, Leutner D, O'Hanlon JF. Seasonal allergic rhinitis and antihistamine effects on children's learning. Ann Allergy. 1993;71(2):121-6.
- [116] Simons FE. Learning impairment and allergic rhinitis. Allergy Asthma Proc. 1996;17(4):185-9.

- [117] Szeinbach SL, Seoane-Vazquez EC, Beyer A, Williams PB. The impact of allergic rhinitis on work productivity. Prim Care Respir J. 2007 Apr;16(2):98-105.
- [118] Spector SL, Nicklas RA, Chapman JA, Bernstein IL, Berger WE, Blessing-Moore J, et al. Symptom severity assessment of allergic rhinitis: part 1. Ann Allergy Asthma Immunol. 2003 Aug;91(2):105-14.
- [119] Bousquet PJ, Combescure C, Neukirch F, Klossek JM, Mechin H, Daures JP, et al. Visual analog scales can assess the severity of rhinitis graded according to ARIA guidelines. Allergy. 2007 Apr;62(4):367-72.
- [120] Clement PA, Gordts F. Consensus report on acoustic rhinometry and rhinomanometry. Rhinology. 2005 Sep;43(3):169-79.
- [121] Ragab SM, Lund VJ, Saleh HA, Scadding G. Nasal nitric oxide in objective evaluation of chronic rhinosinusitis therapy. Allergy. 2006 Jun;61(6):717-24.
- [122] Starling-Schwanz R, Peake HL, Salome CM, Toelle BG, Ng KW, Marks GB, et al. Repeatability of peak nasal inspiratory flow measurements and utility for assessing the severity of rhinitis. Allergy. 2005 Jun;60(6):795-800.
- [123] Struben VM, Wieringa MH, Feenstra L, de Jongste JC. Nasal nitric oxide and nasal allergy. Allergy. 2006 Jun;61(6):665-70.
- [124] Litvyakova LI, Baraniuk JN. Nasal provocation testing: a review. Ann Allergy Asthma Immunol. 2001 Apr;86(4):355-64; quiz 64-5, 86.
- [125] Moll B, Klimek L, Eggers G, Mann W. Comparison of olfactory function in patients with seasonal and perennial allergic rhinitis. Allergy. 1998 Mar;53(3):297-301.
- [126] Van Hoecke H, Vastesaeger N, Dewulf L, De Bacquer D, van Cauwenberge P. Is the allergic rhinitis and its impact on asthma classification useful in daily primary care practice? J Allergy Clin Immunol. 2006 Sep;118(3):758-0
- [127] Valero A, Ferrer M, Sastre J, Navarro AM, Monclus L, Marti-Guadano E, et al. A new criterion to discriminate between patients with moderate and severe allergic rhinitis based on the Allergic Rhinitis and its Impact on Asthma severity items. J Allergy Clin Immunol. 2007 May 24.
- [128] Bateman ED. Severity and control of severe asthma. J Allergy Clin Immunol. 2006 Mar;117(3):519-21.
- [129] Bateman ED, Boushey HA, Bousquet J, Busse WW, Clark TJ, Pauwels RA, et al. Can Guideline-defined Asthma Control be Achieved? The Gaining Optimal Asthma ControL Study. Am J Respir Crit Care Med. 2004 Jul 15.
- [130] Li J, Oppehneimer J, Bernstein I, Nicklas R. Attaining optimal asthma control: a practice parameter. J Allergy Clin Immunol. 2005;116 (5)(S3-11).
- [131] Roche N, Morel H, Martel P, Godard P. Clinical practice guidelines: medical follow-up of patients with asthmaadults and adolescents. Respir Med. 2005 Jul;99(7):793-815.
- [132] Humbert M, Holgate S, Boulet LP, Bousquet J. Asthma control or severity: that is the question. Allergy. 2007 Feb;62(2):95-101.
- [133] Gautrin D, Desrosiers M, Castano R. Occupational rhinitis. Curr Opin Allergy Clin Immunol. 2006 Apr;6(2):77-84.
- [134] Heederik D, Venables KM, Malmberg P, Hollander A, Karlsson AS, Renstrom A, et al. Exposure-response relationships for work-related sensitization in workers exposed to rat urinary allergens: results from a pooled study. J Allergy Clin Immunol. 1999;103(4):678-84.
- [135] Fernandez-Rivas M, Perez-Carral C, Senent CJ. Occupational asthma and rhinitis caused by ash (Fraxinus excelsior) wood dust. Allergy. 1997;52(2):196-9.
- [136] Groenewoud GC, de Graaf in 't Veld C, vVan Oorschotvan Nes AJ, de Jong NW, Vermeulen AM, van Toorenenbergen AW, et al. Prevalence of sensitization to the predatory mite Amblyseius cucumeris as a new occupational allergen in horticulture. Allergy. 2002;57(7):614-9.

- [137] Bousquet J, Flahault A, Vandenplas O, Ameille J, Duron JJ, Pecquet C, et al. Natural rubber latex allergy among health care workers: a systematic review of the evidence. J Allergy Clin Immunol. 2006 Aug;118(2):447-54.
- [138] Sarlo K, Kirchner DB. Occupational asthma and allergy in the detergent industry: new developments. Curr Opin Allergy Clin Immunol. 2002 Apr;2(2):97-101.
- [139] Baur X. Baker's asthma: causes and prevention. Int Arch Occup Environ Health. 1999;72(5):292-6.
- [140] Gautrin D, Ghezzo H, Infante-Rivard C, Malo JL. Incidence and host determinants of work-related rhinoconjunctivitis in apprentice pastry-makers. Allergy. 2002 Oct;57(10):913-8.
- [141] Malo JL. Occupational rhinitis and asthma due to metal salts. Allergy. 2005 Feb;60(2):138-9.
  [142] Schiffman SS, Nagle HT. Effect of environmental
- [142] Schiffman SS, Nagle HT. Effect of environmental pollutants on taste and smell. Otolaryngol Head Neck Surg. 1992;106(6):693-700.
- [143] Hytonen M, Kanerva L, Malmberg H, Martikainen R, Mutanen P, Toikkanen J. The risk of occupational rhinitis. Int Arch Occup Environ Health. 1997;69(6):487-90.
- [144] Hytonen M, Sala E. Nasal provocation test in the diagnostics of occupational allergic rhinitis. Rhinology. 1996;34(2):86-90.
- [145] Pirila T, Talvisara A, Alho OP, Oja H. Physiological fluctuations in nasal resistance may interfere with nasal monitoring in the nasal provocation test. Acta Otolaryngol Stockh. 1997;117(4):596-600.
- [146] Stevenson DD, Szczeklik A. Clinical and pathologic perspectives on aspirin sensitivity and asthma. J Allergy Clin Immunol. 2006 Oct;118(4):773-86; quiz 87-8.
- [147] Hedman J, Kaprio J, Poussa T, Nieminen MM. Prevalence of asthma, aspirin intolerance, nasal polyposis and chronic obstructive pulmonary disease in a population-based study. Int J Epidemiol. 1999;28(4):717-22.
- [148] Szczeklik A, Sanak M, Nizankowska-Mogilnicka E, Kielbasa B. Aspirin intolerance and the cyclooxygenaseleukotriene pathways. Curr Opin Pulm Med. 2004 Jan;10(1):51-6.
- [149] Szczeklik A, Stevenson DD. Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J Allergy Clin Immunol. 2003 May;111(5):913-21; quiz 22.
- [150] Ying S, Meng Q, Scadding G, Parikh A, Corrigan CJ, Lee TH. Aspirin-sensitive rhinosinusitis is associated with reduced E-prostanoid 2 receptor expression on nasal mucosal inflammatory cells. J Allergy Clin Immunol. 2006 Feb;117(2):312-8.
- [151] Kowalski ML, Ptasinska A, Jedrzejczak M, Bienkiewicz B, Cieslak M, Grzegorczyk J, et al. Aspirin-triggered 15-HETE generation in peripheral blood leukocytes is a specific and sensitive Aspirin-Sensitive Patients Identification Test (ASPITest). Allergy. 2005 Sep;60(9):1139-45.
- [152] Kowalski ML. Rhinosinusitis and nasal polyposis in aspirin sensitive and aspirin tolerant patients: are they different? Thorax. 2000 Oct;55 Suppl 2:S84-6.
- [153] Kowalski ML, Makowska J. Use of nonsteroidal antiinflammatory drugs in patients with aspirin hypersensitivity : safety of cyclo-oxygenase-2 inhibitors. Treat Respir Med. 2006;5(6):399-406.
- [154] Girgis IH, Yassin A, Hamdy H, Moris M. Estimation of effect of drugs on the nasal circulation. J Laryngol Otol. 1974;88(12):1163-8.
- [155] Bauer GE, Hull RD, Stokes GS, Raftos J. The reversibility of side effects of guanethidine therapy. Med J Aust. 1973;1(19):930-3.
- [156] Gerth-van-Wijk R, Dieges PH. Nasal hyperresponsiveness to histamine, methacholine and phentolamine in patients with perennial non-allergic rhinitis and in patients with infectious rhinitis. Clin Otolaryngol. 1991;16(2):133-7.
- [157] Proud D, Naclerio RM, Meyers DA, Kagey-Sobotka A, Lichtenstein LM, Valentine MD. Effects of a single-dose

pretreatment with captopril on the immediate response to nasal challenge with allergen. Int Arch Allergy Appl Immunol. 1990;93(2-3):165-70.

- [158] Kaufman HS. Timolol-induced vasomotor rhinitis: a new iatrogenic syndrome [letter]. Arch Ophthalmol. 1986;104(7):967, 70.
- [159] Graf P. Rhinitis medicamentosa: aspects of pathophysiology and treatment. Allergy. 1997;52(40 Suppl):28-34.
- [160] Scadding GK. Rhinitis medicamentosa [editorial]. Clin Exp Allergy. 1995;25(5):391-4.
- [161] Lockey RF. Rhinitis medicamentosa and the stuffy nose. J Allergy Clin Immunol. 2006 Nov;118(5):1017-8.
- [162] Graf P. Rhinitis medicamentosa: a review of causes and treatment. Treat Respir Med. 2005;4(1):21-9.
- [163] Schwartz RH, Estroff T, Fairbanks DN, Hoffmann NG. Nasal symptoms associated with cocaine abuse during adolescence. Arch Otolaryngol Head Neck Surg. 1989;115(1):63-4.
- [164] Dax EM. Drug dependence in the differential diagnosis of allergic respiratory disease. Ann Allergy. 1990;64(3):261-3.
- [165] Marple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg. 2004 Jan;130(1):131-41.
- [166] Ellegard E, Karlsson G. Nasal congestion during the menstrual cycle. Clin Otolaryngol. 1994;19(5):400-3.
- [167] Mabry RL. Rhinitis of pregnancy. South Med J. 1986;79(8):965-71.
- [168] Ellegard E, Karlsson G. Nasal congestion during pregnancy [In Process Citation]. Clin Otolaryngol. 1999;24(4):307-11.
- [169] Incaudo G, Schatz M. Rhinosinusitis associated with endocrin conditions: hypothyroidism and pregnancy. In: M Schatz RZ, GA settipane, ed. Nasal manifestations of systemic diseases. Providence, RI 1991.
- [170] Fatti LM, Scacchi M, Pincelli AI, Lavezzi E, Cavagnini F. Prevalence and pathogenesis of sleep apnea and lung disease in acromegaly. Pituitary. 2001 Sep;4(4):259-62.
- [171] Ellegard EK. Clinical and pathogenetic characteristics of pregnancy rhinitis. Clin Rev Allergy Immunol. 2004 Jun;26(3):149-59.
- [172] Schatz M. Special considerations for the pregnant woman and senior citizen with airway disease. J Allergy Clin Immunol. 1998;101(2 Pt 2):S373-8.
- [173] Leroyer C, Malo JL, Girard D, Dufour JG, Gautrin D. Chronic rhinitis in workers at risk of reactive airways dysfunction syndrome due to exposure to chlorine. Occup Environ Med. 1999;56(5):334-8.
- [174] Shusterman DJ, Murphy MA, Balmes JR. Subjects with seasonal allergic rhinitis and nonrhinitic subjects react differentially to nasal provocation with chlorine gas. J Allergy Clin Immunol. 1998;101(6 Pt 1):732-40.
- [175] Graudenz GS, Landgraf RG, Jancar S, Tribess A, Fonseca SG, Fae KC, et al. The role of allergic rhinitis in nasal responses to sudden temperature changes. J Allergy Clin Immunol. 2006 Nov,118(5):1126-32.
- [176] Silvers WS. The skier's nose: a model of cold-induced rhinorrhea. Ann Allergy. 1991;67(1):32-6.
- [177] Calderon-Garciduenas L, Osorno-Velazquez A, Bravo-Alvarez H, Delgado-Chavez R, Barrios-Marquez R. Histopathologic changes of the nasal mucosa in southwest Metropolitan Mexico City inhabitants. Am J Pathol. 1992;140(1):225-32.
- [178] Katz RM. Rhinitis in the athlete. J Allergy Clin Immunol. 1984;73(5 Pt 2):708-11.
- [179] Katelaris CH, Carrozzi FM, Burke TV, Byth K. Effects of intranasal budesonide on symptoms, quality of life, and performance in elite athletes with allergic rhinoconjunctivitis. Clin J Sport Med. 2002 Sep;12(5):296-300.
- [180] Katelaris CH, Carrozzi FM, Burke TV, Byth K. A springtime olympics demands special consideration for

allergic athletes. J Allergy Clin Immunol. 2000 Aug;106(2):260-6.

- [181] Alaranta A, Alaranta H, Heliovaara M, Alha P, Palmu P, Helenius I. Allergic rhinitis and pharmacological management in elite athletes. Med Sci Sports Exerc. 2005 May;37(5):707-11.
- [182] Silvers WS, Poole JA. Exercise-induced rhinitis: a common disorder that adversely affects allergic and nonallergic athletes. Ann Allergy Asthma Immunol. 2006 Feb;96(2):334-40.
- [183] Wilber RL, Rundell KW, Szmedra L, Jenkinson DM, Im J, Drake SD. Incidence of exercise-induced bronchospasm in Olympic winter sport athletes. Med Sci Sports Exerc. 2000 Apr;32(4):732-7.
- [184] Helenius IJ, Tikkanen HO, Sarna S, Haahtela T. Asthma and increased bronchial responsiveness in elite athletes: atopy and sport event as risk factors. J Allergy Clin Immunol. 1998 May;101(5):646-52.
- [185] Shusterman D, Balmes J, Avila PC, Murphy MA, Matovinovic E. Chlorine inhalation produces nasal congestion in allergic rhinitics without mast cell degranulation. Eur Respir J. 2003 Apr;21(4):652-7.
- [186] Shusterman D, Balmes J, Murphy MA, Tai CF, Baraniuk J. Chlorine inhalation produces nasal airflow limitation in allergic rhinitic subjects without evidence of neuropeptide release. Neuropeptides. 2004 Dec;38(6):351-8.
- [187] Shusterman D, Tarun A, Murphy MA, Morris J. Seasonal allergic rhinitic and normal subjects respond differentially to nasal provocation with acetic acid vapor. Inhal Toxicol. 2005 Mar;17(3):147-52.
- [188] Ojima M, Tonori H, Sato T, Sakabe K, Miyata M, Ishikawa S, et al. Odor perception in patients with multiple chemical sensitivity. Tohoku J Exp Med. 2002 Nov;198(3):163-73.
- [189] Bascom R, Kesavanathan J, Permutt T, Fitzgerald TK, Sauder L, Swift DL. Tobacco smoke upper respiratory response relationships in healthy nonsmokers. Fundam Appl Toxicol. 1996;29(1):86-93.
- [190] Bascom R, Kesavanathan J, Fitzgerald TK, Cheng KH, Swift DL. Sidestream tobacco smoke exposure acutely alters human nasal mucociliary clearance. Environ Health Perspect. 1995;103(11):1026-30.
- [191] Vinke JG, KleinJan A, Severijnen LW, Fokkens WJ. Passive smoking causes an 'allergic' cell infiltrate in the nasal mucosa of non-atopic children. Int J Pediatr Otorhinolaryngol. 1999 Dec 5;51(2):73-81.
- [192] Jinot J, Bayard S. Respiratory health effects of exposure to environmental tobacco smoke. Rev Environ Health. 1996;11(3):89-100.
- [193] Bousquet PJ, Fabbro-Peray P, Janin N, Annesi-Maesano I, Neukirch F, Daures JP, et al. Pilot study assessing the impact of smoking on nasal-specific quality of life. Allergy. 2004 Sep;59(9):1015-6.
- [194] Villar MT, Holgate ST. IgE, smoking and lung function. Clin Exp Allergy. 1995 Mar;25(3):206-9.
- [195] Bousquet J, Metcalfe D, Warner J. Food allergy. Report of the Codex Alimentarius. ACI International. 1997;9:10-21.
- [196] Raphael G, Raphael MH, Kaliner M. Gustatory rhinitis: a syndrome of food-induced rhinorrhea. J Allergy Clin Immunol. 1989;83(1):110-5.
- [197] Lacroix JS, Buvelot JM, Polla BS, Lundberg JM. Improvement of symptoms of non-allergic chronic rhinitis by local treatment with capsaicin. Clin Exp Allergy. 1991;21(5):595-600.
- [198] Quirce S, Cuevas M, Olaguibel JM, Tabar AI. Occupational asthma and immunologic responses induced by inhaled carmine among employees at a factory making natural dyes. J Allergy Clin Immunol. 1994;93(1 Pt 1):44-52.
- [199] Mullarkey MF, Hill JS, Webb DR. Allergic and nonallergic rhinitis: their characterization with attention to the meaning of nasal eosinophilia. J Allergy Clin Immunol. 1980;65(2):122-6.

- [200] Jacobs RL, Freedman PM, Boswell RN. Nonallergic rhinitis with eosinophilia (NARES syndrome). Clinical and immunologic presentation. J Allergy Clin Immunol. 1981;67(4):253-62.
- [201] Ellis AK, Keith PK. Nonallergic rhinitis with eosinophilia syndrome. Curr Allergy Asthma Rep. 2006 May;6(3):215-20.
- [202] Leone C, Teodoro C, Pelucchi A, Mastropasqua B, Cavigioli G, Marazzini L, et al. Bronchial responsiveness and airway inflammation in patients with nonallergic rhinitis with eosinophilia syndrome. J Allergy Clin Immunol. 1997;100(6 Pt 1):775-80.
- [203] Moneret-Vautrin DA, Hsieh V, Wayoff M, Guyot JL, Mouton C, Maria Y. Nonallergic rhinitis with eosinophilia syndrome a precursor of the triad: nasal polyposis, intrinsic asthma, and intolerance to aspirin. Ann Allergy. 1990;64(6):513-8.
- [204] Blom HM, Godthelp T, Fokkens WJ, KleinJan A, Mulder PG, Rijntjes E. The effect of nasal steroid aqueous spray on nasal complaint scores and cellular infiltrates in the nasal mucosa of patients with nonallergic, noninfectious perennial rhinitis [see comments]. J Allergy Clin Immunol. 1997;100(6 Pt 1):739-47.
- [205] Goodman WS, De Souza FM. Atrophic rhinitis. Otolaryngol Clin North Am. 1973;6(3):773-82.
- [206] Henriksen S, Gundersen W. The aetiology of azaena. Acta Pathol Microbiol Scand. 1959;47:380-6.
- [207] van Rijswijk JB, Blom HM, Fokkens WJ. Idiopathic rhinitis, the ongoing quest. Allergy. 2005 Dec;60(12):1471-81.
- [208] Blom HM, Godthelp T, Fokkens WJ, Klein-Jan A, Holm AF, Vroom TM, et al. Mast cells, eosinophils and IgEpositive cells in the nasal mucosa of patients with vasomotor rhinitis. An immunohistochemical study. Eur Arch Otorhinolaryngol 1995;1(9):S33-9.
- [209] Blom HM, Van Rijswijk JB, Garrelds IM, Mulder PG, Timmermans T, Gerth van Wijk R. Intranasal capsaicin is efficacious in non-allergic, non-infectious perennial rhinitis. A placebo-controlled study. Clin Exp Allergy. 1997;27(7):796-801.
- [210] Shapiro GG, Rachelefsky GS. Introduction and definition of sinusitis. J Allergy Clin Immunol. 1992;90(3 Pt 2):417-8.
- [211] Williams J, Jr., Simel DL. Does this patient have sinusitis? Diagnosing acute sinusitis by history and physical examination [see comments]. Jama. 1993;270(10):1242-6.
- [212] Lund V. Infectious rhinosinusitis in adults: Classification, Etiology and Management. ENT J. 1997;76, suppl:1-22.
- [213] Fokkens W. Evidence based diagnosis and treatment of rhinosinusitis and nasal polyps. Rhinology. 2005 Mar;43(1):1.
- [214] Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: establishing definitions for clinical research and patient care. J Allergy Clin Immunol. 2004 Dec;114(6 Suppl):155-212.
- [215] Wabnitz DA, Nair S, Wormald PJ. Correlation between preoperative symptom scores, quality-of-life questionnaires, and staging with computed tomography in patients with chronic rhinosinusitis. Am J Rhinol. 2005 Jan-Feb;19(1):91-6.
- [216] Basu S, Georgalas C, Kumar BN, Desai S. Correlation between symptoms and radiological findings in patients with chronic rhinosinusitis: an evaluation study using the Sinonasal Assessment Questionnaire and Lund-Mackay grading system. Eur Arch Otorhinolaryngol. 2005 Sep;262(9):751-4.
- [217] Lund VJ, Mackay IS. Staging in rhinosinusitus. Rhinology. 1993 Dec;31(4):183-4.
- [218] Ashraf N, Bhattacharyya N. Determination of the "incidental" Lund score for the staging of chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2001 Nov;125(5):483-6.
- [219] Meltzer EO, Hamilos DL, Hadley JA, Lanza DC, Marple BF, Nicklas RA, et al. Rhinosinusitis: developing

guidance for clinical trials. J Allergy Clin Immunol. 2006 Nov;118(5 Suppl):S17-61.

- [220] Metson RB, Gliklich RE. Clinical outcomes in patients with chronic sinusitis. Laryngoscope. 2000 Mar;110(3 Pt 3):24-8.
- [221] Birch DS, Saleh HA, Wodehouse T, Simpson IN, Mackay IS. Assessing the quality of life for patients with chronic rhinosinusitis using the "Rhinosinusitis Disability Index". Rhinology. 2001 Dec;39(4):191-6.
- [222] Senior BA, Glaze C, Benninger MS. Use of the Rhinosinusitis Disability Index (RSDI) in rhinologic disease. Am J Rhinol. 2001 Jan-Feb;15(1):15-20.
- [223] van Agthoven M, Fokkens WJ, van de Merwe JP, Marijke van Bolhuis E, Uyl-de Groot CA, Busschbach JJ. Quality of life of patients with refractory chronic rhinosinusitis: effects of filgrastim treatment. Am J Rhinol. 2001 Jul-Aug;15(4):231-7.
- [224] Kay DJ, Rosenfeld RM. Quality of life for children with persistent sinonasal symptoms. Otolaryngol Head Neck Surg. 2003 Jan;128(1):17-26.
  [225] Wang PC, Tai CJ, Lin MS, Chu CC, Liang SC. Quality
- [225] Wang PC, Tai CJ, Lin MS, Chu CC, Liang SC. Quality of life in Taiwanese adults with chronic rhino-sinusitis. Qual Life Res. 2003 Jun;12(4):443-8.
- [226] Atlas SJ, Galiagher PM, Wu YA, Singer DE, Gliklich RE, Metson RB, et al. Development and validation of a new health-related quality of life instrument for patients with sinusitis. Qual Life Res. 2005 Jun;14(5):1375-86.
- [227] Chen H, Katz PP, Shiboski S, Blanc PD. Evaluating change in health-related quality of life in adult rhinitis: responsiveness of the Rhinosinusitis Disability Index. Health Qual Life Outcomes. 2005;3:68.
- [228] Ragab SM, Lund VJ, Scadding G. Evaluation of the medical and surgical treatment of chronic rhinosinusitis: a prospective, randomised, controlled trial. Laryngoscope. 2004 May;114(5):923-30.
- [229] Blomgren K, Alho OP, Ertama L, Huovinen P, Korppi M, Makela M, et al. Acute sinusitis: Finnish clinical practice guidelines. Scand J Infect Dis. 2005;37(4):245-50.
- [230] Blomgren K, Hytonen M, Pellinen J, Relander M, Pitkaranta A. Diagnostic accuracy of acute maxillary sinusitis in adults in primary care. Scand J Prim Health Care. 2002 Mar;20(1):40-4.
- [231] Varonen H, Savolainen S, Kunnamo I, Heikkinen R, Revonta M. Acute rhinosinusitis in primary care: a comparison of symptoms, signs, ultrasound, and radiography. Rhinology. 2003 Mar;41(1):37-43.
- [232] Steinke JW, Bradley D, Arango P, Crouse CD, Frierson H, Kountakis SE, et al. Cysteinyl leukotriene expression in chronic hyperplastic sinusitis-nasal polyposis: importance to eosinophilia and asthma. J Allergy Clin Immunol. 2003 Feb;111(2):342-9.
- [233] Ichimura K, Shimazaki Y, Ishibashi T, Higo R. Effect of new macrolide roxithromycin upon nasal polyps associated with chronic sinusitis. Auris Nasus Larynx. 1996;23:48-56.
- [234] Van Zele T, Claeys S, Gevaert P, Van Maele G, Holtappels G, Van Cauwenberge P, et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy. 2006 Nov;61(11):1280-9.
- [235] Barnes K, Marsh D. The genetics and complexity of allergy and asthma. Immunol Today. 1998;19:325-32.
- [236] Kurz T, Altmueller J, Strauch K, Ruschendorf F, Heinzmann A, Moffatt MF, et al. A genome-wide screen on the genetics of atopy in a multiethnic European population reveals a major atopy locus on chromosome 3q21.3. Allergy. 2005 Feb;60(2):192-9.
- [237] Joki-Erkkila VP, Karjalainen J, Hulkkonen J, Pessi T, Nieminen MM, Aromaa A, et al. Allergic rhinitis and polymorphisms of the interleukin 1 gene complex. Ann Allergy Asthma Immunol. 2003 Sep;91(3):275-9.
- [238] Haagerup A, Bjerke T, Schoitz PO, Binderup HG, Dahl R, Kruse TA. Allergic rhinitis--a total genome-scan for susceptibility genes suggests a locus on chromosome 4q24-q27. Eur J Hum Genet. 2001 Dec;9(12):945-52.

- [239] Nieters A, Linseisen J, Becker N. Association of polymorphisms in Th1, Th2 cytokine genes with hayfever and atopy in a subsample of EPIC-Heidelberg. Clin Exp Allergy. 2004 Mar;34(3):346-53.
- [240] Kim JJ, Kim HJ, Lee IK, Chung HT, Lee JH. Association between polymorphisms of the angiotensin-converting enzyme and angiotensinogen genes and allergic rhinitis in a Korean population. Ann Otol Rhinol Laryngol. 2004 Apr;113(4):297-302.
- [241] Chae SC, Park YR, Oh GJ, Lee JH, Chung HT. The suggestive association of eotaxin-2 and eotaxin-3 gene polymorphisms in Korean population with allergic rhinitis. Immunogenetics. 2005 Jan;56(10):760-4.
- [242] Zhang J, Migita O, Koga M, Shibasaki M, Arinami T, Noguchi E. Determination of structure and transcriptional regulation of CYSLTR1 and an association study with asthma and rhinitis. Pediatr Allergy Immunol. 2006 Jun;17(4):242-9.
- [243] Zhang J, Noguchi E, Migita O, Yokouchi Y, Nakayama J, Shibasaki M, et al. Association of a haplotype block spanning SDAD1 gene and CXC chemokine genes with allergic rhinitis. J Allergy Clin Immunol. 2005 Mar;115(3):548-54.
- [244] Eskandari HG, Unal M, Ozturk OG, Vayisoglu Y, Muslu N. Leukotriene C4 synthase A-444C gene polymorphism in patients with allergic rhinitis. Otolaryngol Head Neck Surg. 2006 Jun;134(6):997-1000.
- [245] Nakamura H, Higashikawa F, Miyagawa K, Nobukuni Y, Endo T, Imai T, et al. Association of single nucleotide polymorphisms in the eosinophil peroxidase gene with Japanese cedar pollinosis. Int Arch Allergy Immunol. 2004 Sep;135(1):40-3.
- [246] Lee HM, Park SA, Chung SW, Woo JS, Chae SW, Lee SH, et al. Interleukin-18/-607 gene polymorphism in allergic rhinitis. Int J Pediatr Otorhinolaryngol. 2006 Jun;70(6):1085-8.
- [247] Brasch-Andersen C, Haagerup A, Borglum AD, Vestbo J, Kruse TA. Highly significant linkage to chromosome 3q13.31 for rhinitis and related allergic diseases. J Med Genet. 2006 Mar;43(3):e10.
- [248] Kabesch M, Depner M, Dahmen I, Weiland SK, Vogelberg C, Niggemann B, et al. Polymorphisms in eosinophil pathway genes, asthma and atopy. Allergy, 2007 Apr;62(4):423-8.
- [249] Strachan DP. Is allergic disease programmed in early life? [editorial; comment]. Clin Exp Allergy. 1994;24(7):603-5.
- [250] von Mutius E, Weiland SK, Fritzsch C, Duhme H, Keil U. Increasing prevalence of hay fever and atopy among children in Leipzig, East Germany [see comments]. Lancet. 1998;351(9106):862-6.
- [251] Stazi MA, Sampogna F, Montagano G, Grandolfo ME, Couilliot MF, Annesi-Maesano I. Early life factors related to clinical manifestations of atopic disease but not to skin-prick test positivity in young children. Pediatr Allergy Immunol. 2002 Apr;13(2):105-12.
- [252] Butland BK, Strachan DP, Lewis S, Bynner J, Butler N, Britton J. Investigation into the increase in hay fever and eczema at age 16 observed between the 1958 and 1970 British birth cohorts [see comments]. Bmj. 1997;315(7110):717-21.
- [253] Bolte G, Schmidt M, Maziak W, Keil U, Nasca P, von Mutius E, et al. The relation of markers of fetal growth with asthma, allergies and serum immunoglobulin E levels in children at age 5-7 years. Clin Exp Allergy. 2004 Mar;34(3):381-8.
- [254] Rasanen M, Kaprio J, Laitinen T, Winter T, Koskenvuo M, Laitinen LA. Perinatal risk factors for hay fever--a study among 2550 Finnish twin families. Twin Res. 2001 Oct;4(5):392-9.
- [255] McKeever TM, Lewis SA, Smith C, Collins J, Heatlie H, Frischer M, et al. Siblings, multiple births, and the incidence of allergic disease: a birth cohort study using the West Midlands general practice research database. Thorax. 2001 Oct;56(10):758-62.

- [256] Karmaus W, Botezan C. Does a higher number of siblings protect against the development of allergy and asthma? A review. J Epidemiol Community Health. 2002 Mar;56(3):209-17.
- [257] Karmaus W, Eneli I. Maternal atopy and the number of offspring: is there an association? Pediatr Allergy Immunol. 2003 Dec;14(6):470-4.
- [258] McKeever TM, Lewis SA, Smith C, Hubbard R. Mode of delivery and risk of developing allergic disease. J Allergy Clin Immunol. 2002 May;109(5):800-2.
- [259] Bager P, Melbye M, Rostgaard K, Benn CS, Westergaard T. Mode of delivery and risk of allergic rhinitis and asthma. J Allergy Clin Immunol. 2003 Jan;111(1):51-6.
- [260] Maitra A, Sherriff A, Strachan D, Henderson J. Mode of delivery is not associated with asthma or atopy in childhood. Clin Exp Allergy. 2004 Sep;34(9):1349-55.
  [261] Renz-Polster H, David MR, Buist AS, Vollmer WM,
- [261] Renz-Polster H, David MR, Buist AS, Vollmer WM, O'Connor EA, Frazier EA, et al. Caesarean section delivery and the risk of allergic disorders in childhood. Clin Exp Allergy. 2005 Nov;35(11):1466-72.
  [262] Juhn YJ, Weaver A, Katusic S, Yunginger J. Mode of
- [262] Juhn YJ, Weaver A, Katusic S, Yunginger J. Mode of delivery at birth and development of asthma: a population-based cohort study. J Allergy Clin Immunol. 2005 Sep;116(3):510-6.
- [263] Braback L, Hedberg A. Perinatal risk factors for atopic disease in conscripts [see comments]. Clin Exp Allergy. 1998;28(8):936-42.
- [264] Sayilahti E, Siltanen M, Pekkanen J, Kajosaari M. Mothers of very low birth weight infants have less atopy than mothers of full-term infants. Clin Exp Allergy. 2004 Dec;34(12):1851-4.
- [265] Katz KA, Pocock SJ, Strachan DP. Neonatal head circumference, neonatal weight, and risk of hayfever, asthma and eczema in a large cohort of adolescents from Sheffield, England. Clin Exp Allergy. 2003 Jun;33(6):737-45.
- [266] Kung YY, Chen YC, Hwang SJ, Chen TJ, Chen FP. The prescriptions frequencies and patterns of Chinese herbal medicine for allergic rhinitis in Taiwan. Allergy. 2006 Nov;61(11):1316-8.
- [267] Bjorksten F, Suoniemi I, Koski V. Neonatal birch-pollen contact and subsequent allergy to birch pollen. Clin Allergy. 1980;10(5):585-91.
- [268] Kemp AS. Relationship between the time of birth and the development of immediate hypersensitivity to grasspollen antigens. Med J Aust. 1979;1(7):263-4.
- [269] Pedersen PA, Weeke ER. Month of birth in asthma and allergic rhinitis. Scand J Prim Health Care. 1983;1(3-4):97-101.
- [270] Aberg N. Birth season variation in asthma and allergic rhinitis. Clin Exp Allergy. 1989;19(6):643-8.
- [271] Sibbald B, Rink E. Birth month variation in atopic and non-atopic rhinitis. Clin Exp Allergy. 1990;20(3):285-8.
- [272] Gillam SJ, Jarman B, White P, Law R. Ethnic differences in consultation rates in urban general practice [see comments]. Bmj. 1989;299(6705):953-7.
- [273] Pattemore PK, Asher MI, Harrison AC, Mitchell EA, Rea HH, Stewart AW. Ethnic differences in prevalence of asthma symptoms and bronchial hyperresponsiveness in New Zealand schoolchildren. Thorax. 1989;44(3):168-76.
- [274] Tedeschi A, Barcella M, Bo GA, Miadonna A. Onset of allergy and asthma symptoms in extra-European immigrants to Milan, Italy: possible role of environmental factors. Clin Exp Allergy. 2003 Apr;33(4):449-54.
- [275] Turkeltaub PC, Gergen PJ. Prevalence of upper and lower respiratory conditions in the US population by social and environmental factors: data from the second National Health and Nutrition Examination Survey, 1976 to 1980 (NHANES II). Ann Allergy. 1991;67(2 Pt 1):147-54.
- [276] Smith JM. The long-term effect of moving on patients with asthma and hay fever. J Allergy Clin Immunol. 1971;48(4):191-9.

- [277] Kivity S, Sade K, Abu-Arisha F, Lerman Y. Epidemiology of bronchial asthma and chronic rhinitis in schoolchildren of different ethnic origins from two neighboring towns in Israel. Pediatr Pulmonol. 2001 Sep;32(3):217-21.
- [278] Savolainen J, Viander M, Koivikko A. IgE-, IgA- and IgG-antibody responses to carbohydrate and protein antigens of Candida albicans in asthmatic children. Allergy. 1990;45(1):54-63.
- [279] King TP, Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TA, Thomas W. Allergen nomenclature. Allergy. 1995;50(9):765-74.
- [280] Stewart GA, Thompson PJ. The biochemistry of common aeroallergens [see comments]. Clin Exp Allergy. 1996;26(9):1020-44.
- [281] Boulet LP, Turcotte H, Laprise C, Lavertu C, Bedard PM, Lavoie A, et al. Comparative degree and type of sensitization to common indoor and outdoor allergens in subjects with allergic rhinitis and/or asthma. Clin Exp Allergy. 1997;27(1):52-9.
- [282] Platts-Mills TA, Wheatley LM, Aalberse RC. Indoor versus outdoor allergens in allergic respiratory disease. Curr Opin Immunol. 1998;10(6):634-9.
- [283] Marogna M, Massolo A, Berra D, Zanon P, Chiodini E, Canonica GW, et al. The type of sensitizing allergen can affect the evolution of respiratory allergy. Allergy. 2006 Oct;61(10):1209-15.
- [284] Braun-Fahrlander C, Wuthrich B, Gassner M, Grize L, Sennhauser FH, Varonier HS, et al. Validation of a rhinitis symptom questionnaire (ISAAC core questions) in a population of Swiss school children visiting the school health services. SCARPOL-team. Swiss Study on Childhood Allergy and Respiratory Symptom with respect to Air Pollution and Climate. International Study of Asthma and Allergies in Childhood. Pediatr Allergy Immunol. 1997;8(2):75-82.
- [285] Gergen PJ, Turkeltaub PC. The association of individual allergen reactivity with respiratory disease in a national sample: data from the second National Health and Nutrition Examination Survey, 1976-80 (NHANES II). J Allergy Clin Immunol. 1992;90(4 Pt 1):579-88.
- [286] Pearce N, Douwes J, Beasley R. Is allergen exposure the major primary cause of asthma? Thorax. 2000;55(5):424-31.
- [287] Peat JK, Tovey E, Mellis CM, Leeder SR, Woolcock AJ. Importance of house dust mite and Alternaria allergens in childhood asthma: an epidemiological study in two climatic regions of Australia. Clin Exp Allergy. 1993 Oct;23(10):812-20.
- [288] Boezen HM, Postma DS, Schouten JP, Kerstjens HA, Rijcken B. PEF variability, bronchial responsiveness and their relation to allergy markers in a random population (20-70 yr). Am J Respir Crit Care Med. 1996 Jul;154(1):30-5.
- [289] Kerkhof M, Schouten JP, De Monchy JG. The association of sensitization to inhalant allergens with allergy symptoms: the influence of bronchial hyperresponsiveness and blood eosinophil count. Clin Exp Allergy. 2000;30(10):1387-94.
- [290] Nelson HS. The importance of allergens in the development of asthma and the persistence of symptoms. J Allergy Clin Immunol. 2000 Jun;105(6 Pt 2):S628-32.
- [291] Zureik M, Neukirch C, Leynaert B, Liard R, Bousquet J, Neukirch F. Sensitisation to airborne moulds and severity of asthma: cross sectional study from European Community respiratory health survey. Bmj. 2002;325(7361):411-4.
- [292] Rosenstretch DL, Eggleston P, Kattan M, Baker D, Slavin RG, Gergen P, et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma [see comments]. N Engl J Med. 1997;336(19):1356-63.
- [293] Lewis SA, Weiss ST, Platts-Mills TA, Burge H, Gold DR. The role of indoor allergen sensitization and exposure in causing morbidity in women with asthma. Am J Respir Crit Care Med. 2002;165(7):961-6.

- [294] Chen WY, Tseng HI, Wu MT, Hung HC, Wu HT, Chen HL, et al. Synergistic effect of multiple indoor allergen sources on atopic symptoms in primary school children. Environ Res. 2003 Sep;93(1):1-8.
- [295] Spieksma FT. Domestic mites from an acarologic perspective. Allergy. 1997;52(4):360-8.
- [296] Platts-Mills TA, Vervloet D, Thomas WR, Aalberse RC, Chapman MD. Indoor allergens and asthma: report of the Third International Workshop. J Allergy Clin Immunol. 1997;100(6 Pt 1):S2-24.
- [297] Platts-Mills TA, Thomas WR, Aalberse RC, Vervloet D, Champman MD. Dust mite allergens and asthma: report of a second international workshop. J Allergy Clin Immunol. 1992;89(5):1046-60.
- [298] Morsy TA, el-Said AM, Salama MM, Arafa MA, Younis TA, Ragheb DA, et al. Four species of house dust mites recovered from houses of patients with allergic respiratory diseases. J Egypt Soc Parasitol. 1995;25(1):195-206.
- [299] Munir AK, Bjorksten B, Einarsson R, Ekstrand-Tobin A, Moller C, Warner A, et al. Mite allergens in relation to home conditions and sensitization of asthmatic children from three climatic regions. Allergy. 1995;50(1):55-64.
- [300] Munir AK, Einarsson R, Dreborg SK. Mite (Der p I, Der f I), cat (Fel d I) and dog (Can f I) allergens in dust from Swedish day-care centres. Clin Exp Allergy. 1995;25(2):119-26.
- [301] Placido JL, Cuesta C, Delgado L, da-Silva JP, Miranda M, Ventas P, et al. Indoor mite allergens in patients with respiratory allergy living in Porto, Portugal. Allergy. 1996;51(9):633-9.
- [302] Rizzo MC, Fernandez-Caldas E, Sole D, Naspitz CK. IgE antibodies to aeroallergens in allergic children in Sao Paulo, Brazil. J Investig Allergol Clin Immunol. 1997;7(4):242-8.
- [303] Weber RW. Dermatophagoides pteronyssinus. Ann Allergy Asthma Immunol. 2001 Dec;87(6):A-4.
- [304] Simpson A, Green R, Custovic A, Woodcock A, Arruda LK, Chapman MD. Skin test reactivity to natural and recombinant Blomia and Dermatophagoides spp. allergens among mite allergic patients in the UK. Allergy. 2003 Jan;58(1):53-6.
- [305] Colloff MJ, Stewart GA, Thompson PJ. House dust acarofauna and Der p I equivalent in Australia: the relative importance of Dermatophagoides pteronyssinus and Euroglyphus maynei. Clin Exp Allergy. 1991;21(2):225-30.
- [306] Arruda LK, Chapman MD. A review of recent immunochemical studies of Blomia tropicalis and Euroglyphus maynei allergens. Exp Appl Acarol. 1992;16(1-2):129-40.
- [307] Walshaw MJ, Evans CC. The effect of seasonal and domestic factors on the distribution of Euroglyphus maynei in the homes of Dermatophagoides pteronyssinus allergic patients. Clin Allergy. 1987;17(1):7-14.
- [308] Colloff MJ. A review of the biology and allergenicity of the house-dust mite Euroglyphus maynei (Acari: Pyroglyphidae) [corrected] [published erratum appears in Exp Appl Acarol 1991 Sep;12(1-2):151]. Exp Appl Acarol. 1991;11(2-3):177-98.
- [309] Arlian LG, Vyszenski-Moher DL, Fernandez-Caldas E. Allergenicity of the mite, Blomia tropicalis. J Allergy Clin Immunol. 1993;91(5):1042-50.
- [310] Caraballo L, Puerta L, Martinez B, Moreno L. Identification of allergens from the mite Blomia tropicalis. Clin Exp Allergy. 1994;24(11):1056-60.
- [311] Stanaland BE, Fernandez-Caldas E, Jacinto CM, Trudeau WL, Lockey RF. Sensitization to Blomia tropicalis: skin test and cross-reactivity studies. J Allergy Clin Immunol. 1994;94(3 Pt 1):452-7.
- [312] Fernandez-Caldas E, Puerta L, Mercado D, Lockey RF, Caraballo LR. Mite fauna, Der p I, Der f I and Blomia tropicalis allergen levels in a tropical environment. Clin Exp Allergy. 1993;23(4):292-7.
- [313] Puerta L, Fernandez-Caldas E, Lockey RF, Caraballo LR. Mite allergy in the tropics: sensitization to six

domestic mite species in Cartagena, Colombia. J Investig Allergol Clin Immunol. 1993;3(4):198-204.

- [314] Tsai JJ, Wu HH, Shen HD, Hsu EL, Wang SR. Sensitization to Blomia tropicalis among asthmatic patients in Taiwan. Int Arch Allergy Immunol. 1998;115(2):144-9.
- [315] Thomas W. Molecular analysis of house dust mite allergens. In: Roberts A, Walker M, eds. Allergic mechanisms and immunotherapeutic strategies. Chichester, UK: John Wiley & Sons 1997:77-98.
- [316] Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions [see comments]. J Clin Invest. 1999;104(1):123-33.
- [317] Herbert CA, King CM, Ring PC, Holgate ST, Stewart GA, Thompson PJ, et al. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1 [see comments]. Am J Respir Cell Mol Biol. 1995;12(4):369-78.
- [318] Pichavant M, Charbonnier AS, Taront S, Brichet A, Wallaert B, Pestel J, et al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J Allergy Clin Immunol. 2005 Apr;115(4):771-8.
- [319] Pauli G, Quoix E, Hedelin G, Bessot JC, Ott M, Dietemann A. Mite allergen content in mattress dust of Dermatophagoides-allergic asthmatics/rhinitics and matched controls. Clin Exp Allergy. 1993;23(7):606-11.
- [320] Pauli G, de-Blay F, Bessot JC, Ott M, Gries P. The role of mattress bases in the mite infestation of dwellings. J Allergy Clin Immunol. 1997;99(2):261-3.
- [321] van-der-Hoeven WA, de-Boer R, Bruin J. The colonisation of new houses by house dust mites (Acari: Pyroglyphidae). Exp Appl Acarol. 1992;16(1-2):75-84.
- [322] Van-Strien RT, Verhoeff AP, Brunekreef B, Van-Wijnen JH. Mite antigen in house dust: relationship with different housing characteristics in The Netherlands. Clin Exp Allergy. 1994;24(9):843-53.
- [323] Zock JP, Brunekreef B, Hazebroek-Kampschreur AA, Roosjen CW. House dust mite allergen in bedroom floor dust and respiratory health of children with asthmatic symptoms. Eur Respir J. 1994;7(7):1254-9.
- [324] Custovic A, Taggart SC, Woodcock A. House dust mite and cat allergen in different indoor environments. Clin Exp Allergy. 1994;24(12):1164-8.
- [325] Arbes SJ, Jr., Cohn RD, Yin M, Muilenberg ML, Burge HA, Friedman W, et al. House dust mite allergen in US beds: results from the First National Survey of Lead and Allergens in Housing. J Allergy Clin Immunol. 2003 Feb;111(2):408-14.
- [326] Lintner TJ, Brame KA. The effects of season, climate, and air-conditioning on the prevalence of Dermatophagoides mite allergens in household dust. J Allergy Clin Immunol. 1993;91(4):862-7.
- [327] Vervloet D, Penaud A, Razzouk H, Senft M, Arnaud A, Boutin C, et al. Altitude and house dust mites. J Allergy Clin Immunol. 1982 Mar;69(3):290-6.
- [328] Charpin D, Kleisbauer IP, Lanteaume A, Razzouk H, Vervloet D, Toumi M, et al. Asthma and allergy to house-dust mites in populations living in high altitudes. Chest. 1988 Apr;93(4):758-61.
- [329] Charlet L, Mulla M, Sanchez-Medina M. Domestic acari of Columbia: population trends of house mites (Acari: Pyroglyphidae) in homes in Bogota. Int J Acarol. 1978;4:23-31.
- [330] Valdivieso R, Iraola V, Estupinan M, Fernandez-Caldas E. Sensitization and exposure to house dust and storage mites in high-altitude areas of ecuador. Ann Allergy Asthma Immunol. 2006 Oct;97(4):532-8.
- [331] Kalra S, Crank P, Hepworth J, Pickering CA, Woodcock AA. Absence of seasonal variation in concentrations of the house dust mite allergen Der p1 in south Manchester homes. Thorax. 1992;47(11):928-31.
- [332] Mariana A, Ho TM, Sofian-Azirun M, Wong AL. House dust mite fauna in the Klang Valley, Malaysia. Southeast

Asian J Trop Med Public Health. 2000 Dec;31(4):712-21.

- [333] Chan-Yeung M, Becker A, Lam J, Dimich-Ward H, Ferguson A, Warren P, et al. House dust mite allergen levels in two cities in Canada: effects of season, humidity, city and home characteristics. Clin Exp Allergy. 1995;25(3):240-6.
- [334] Matheson MC, Abramson MJ, Dharmage SC, Forbes AB, Raven JM, Thien FC, et al. Changes in indoor allergen and fungal levels predict changes in asthma activity among young adults. Clin Exp Allergy. 2005 Jul;35(7):907-13.
- [335] Lau S, Falkenhorst G, Weber A, Werthmann I, Lind P, Buettner-Goetz P, et al. High mite-allergen exposure increases the risk of sensitization in atopic children and young adults. J Allergy Clin Immunol. 1989;84(5 Pt 1):718-25.
- [336] Sporik R, Holgate ST, Platts-Mills TA, Cogswell JJ. Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood. A prospective study. N Engl J Med. 1990;323(8):502-7.
- [337] Kuehr J, Frischer T, Meinert R, Barth R, Forster J, Schraub S, et al. Mite allergen exposure is a risk for the incidence of specific sensitization. J Allergy Clin Immunol (1994;94(1):44-52.
- [338] van-Hage-Hamsten M, Johansson SG. Storage mites. Exp Appl Acarol. 1992;16(1-2):117-28.
- [339] Terho EO, Vohlonen I, Husman K, Rautalahti M, Tukiainen H, Viander M. Sensitization to storage mites and other work-related and common allergens among Finnish dairy farmers. Eur J Respir Dis Suppl. 1987;152:165-74.
- [340] Iversen M, Korsgaard J, Hallas T, Dahl R. Mite allergy and exposure to storage mites and house dust mites in farmers. Clin Exp Allergy. 1990;20(2):211-9.
- [341] van-Hage-Hamsten M, Johansson SG, Hoglund S, Tull P, Wiren A, Zetterstrom O. Storage mite allergy is common in a farming population. Clin Allergy. 1985;15(6):555-64.
- [342] Musken H, Franz JT, Wahl R, Paap A, Cromwell O, Masuch G, et al. Sensitization to different mite species in German farmers: clinical aspects. J Investig Allergol Clin Immunol. 2000 Nov-Dec;10(6):346-51.
- [343] Bernd LA, Ambrozio LC, Baggio D. Storage mite allergy in perennial rhinitis patients not sensitized to house dust mites. J Investig Allergol Clin Immunol. 1996;6(2):94-7.
- [344] Patussi V, Mazzucato S, Lorusso A, Collareta A, Chermaz E, Buttazzi P, et al. Storage mites and their role in the onset of asthma and oculorhinitis among cattle farmers in north-east Italy. Med Lav. 1994;85(5):402-11.
- [345] Burches E, Pelaez A, Morales C, Braso JV, Rochina A, Lopez S, et al. Occupational allergy due to spider mites: Tetranychus urticae (Koch) and Panonychus citri (Koch). Clin Exp Allergy. 1996;26(11):1262-7.
- [346] Delgado J, Gomez E, Palma JL, Gonzalez J, Monteseirin FJ, Martinez A, et al. Occupational rhinoconjunctivitis and asthma caused by Tetranychus urticae (red spider mite). A case report. Clin Exp Allergy. 1994;24(5):477-80.
- [347] Kim YK, Son JW, Kim HY, Park HS, Lee MH, Cho SH, et al. Citrus red mite (Panonychus citri) is the most common sensitizing allergen of asthma and rhinitis in citrus farmers. Clin Exp Allergy. 1999;29(8):1102-9.
- [348] Kim YK, Lee MH, Jee YK, Hong SC, Bae JM, Chang YS, et al. Spider mite allergy in apple-cultivating farmers: european red mite (Panonychus ulmi) and twospotted spider mite (Tetranychus urticae) may be important allergens in the development of work-related asthma and rhinitis symptoms [In Process Citation]. J Allergy Clin Immunol. 1999;104(6):1285-92.
- [349] Kim YK, Lee MH, Jee YK, Hong SC, Bae JM, Chang YS, et al. Spider mite allergy in apple-cultivating farmers: European red mite (Panonychus ulmi) and twospotted spider mite (Tetranychus urticae) may be important allergens in the development of work-related

asthma and rhinitis symptoms. J Allergy Clin Immunol. 1999 Dec:104(6):1285-92

- [350] Gargano D, Romano C, Manguso F, Cutajar M, Altucci P, Astarita C. Relationship between total and allergenspecific IgE serum levels and presence of symptoms in farm workers sensitized to Tetranychus urticae. Allergy. 2002 Nov;57(11):1044-7
- [351] Lutsky I, Teichtahl H, Bar-Sela S. Occupational asthma due to poultry mites. J Allergy Clin Immunol. 1984;73(1 Pt 1):56-60.
- [352] Lee MH, Kim YK, Min KU, Lee BJ, Bahn JW, Son JW, et al. Differences in sensitization rates to outdoor aeroallergens, especially citrus red mite (Panonychus citri), between urban and rural children. Ann Allergy Asthma Immunol. 2001 Jun;86(6):691-5.
- [353] Kim SH, Kim YK, Lee MH, Hong SC, Bae JM, Min KU, et al. Relationship between sensitization to citrus red mite (Panonychus citri) and the prevalence of atopic diseases in adolescents living near citrus orchards. Clin Exp Allergy. 2002 Jul;32(7):1054-8.
- [354] Bousquet J, Dhivert H, Clauzel AM, Hewitt B, Michel FB. Occupational allergy to sunflower pollen. J Allergy Clin Immunol. 1985;75(1 Pt 1):70-4.
- [355] Kanerva L, Makinen-Kiljunen S, Kiistala R, Granlund H. Occupational allergy caused by spathe flower (Spathiphyllum wallisii). Allergy. 1995;50(2):174-8.
- Jimenez A, Moreno C, Martinez J, Martinez A, Bartolome B, Guerra F, et al. Sensitization to sunflower [356] pollen: only an occupational allergy? Int Arch Allergy Immunol. 1994;105(3):297-307.
- [357] Goldberg A, Confino-Cohen R, Waisel Y. Allergic responses to pollen of ornamental plants: high incidence in the general atopic population and especially among Allergy Clin Immunol. flower growers. 1998;102(2):210-4.
- [358] Leuschner RM. Pollen. Experientia. 1993;49(11):931-42.
- [359] Ariano R, Panzani RC, Chiapella M, Augeri G. Pollinosis in a Mediterranean area (Riviera Ligure, Italy): ten years of pollen counts, correlation with clinical sensitization and meteorological data. J Investig Allergol Clin Immunol. 1994;4(2):81-6.
- [360] Todo-Bom A, Tavares B. Aerobiology and allergenic pollens. Allerg Immunol (Paris). 2004 May;36(5):189-90.
- [361] Pallasaho P, Ronmark E, Haahtela T, Sovijarvi AR, Lundback B. Degree and clinical relevance of sensitization to common allergens among adults: a population study in Helsinki, Finland. Clin Exp Allergy. 2006 Apr:36(4):503-9.
- [362] Burr M, Emberlin J, Treu R, Cheng S, Pearce N. Pollen counts in relation to the prevalence of allergic rhinoconjunctivitis, asthma and atopic eczema in the International Study of Asthma and Allergies in Childhood (ISAAC). Clin Exp Allergy. 2003 Dec;33(12):1675-80.
- [363] Davies JM, Bright ML, Rolland JM, O'Hehir R E. Bahia grass pollen specific IgE is common in seasonal rhinitis patients but has limited cross-reactivity with Ryegrass. Allergy. 2005 Feb;60(2):251-5.
- D'Amato G, Spieksma FT, Liccardi G, Jager S, Russo M, [364] Kontou-Fili K, et al. Pollen-related allergy in Europe. Allergy. 1998;53(6):567-78.
- [365] Laaidi M, Laaidi K, Besancenot JP, Thibaudon M. Ragweed in France: an invasive plant and its allergenic Ann Allergy Asthma Immunol. pollen. 2003 Aug;91(2):195-201.
- [366] Solomon WR. Ragweed pollinosis: answers awaiting explanations. Ann Allergy Asthma Immunol. 2001 Feb;86(2):141-2
- [367] D'Amato G, Ruffilli A, Sacerdoti G, Bonini S. Parietaria pollinosis: a review. Allergy. 1992;47(5):443-9.
- [368] Cvitanovic S, Marusic M, Zekan L, Kohler-Kubelka N. Allergy induced by Parietaria officinalis pollen in southern Croatia. Allergy. 1986;41(7):543-5. [369] Cvitanovic S, Marusic M, Juricic M, Vrdoljak E,
- Petrovecki M, Rozga A, et al. Hypersensitivity to

Parietaria officinalis pollen in newcomers to the area with the plant. Allergy. 1993;48(8):592-7

- [370] Holgate ST, Jackson L, Watson HK, Ganderton MA. Sensitivity to Parietaria pollen in the Southampton area as determined by skin-prick and RAST tests. Clin Allergy. 1988;18(6):549-56.
- [371] Kaufman HS. Parietaria: an unrecognized cause of respiratory allergy in the United States. Ann Allergy. 1990;64(3):293-6.
- [372] Botey J, Torres A, Belmonte J, Eseverri JL, Marin A. Parietaria allergy in children. Pediatr Pulmonol Suppl. 1999:18:157-62
- Colombo P, Bonura A, Costa M, Izzo V, Passantino R, Locorotondo G, et al. The allergens of Parietaria. Int [373] Arch Allergy Immunol. 2003 Mar;130(3):173-9.
- Al-Dowaisan A, Fakim N, Khan MR, Arifhodzic N, Panicker R, Hanoon A, et al. Salsola pollen as a predominant cause of respiratory allergies in Kuwait. [374] Ann Allergy Asthma Immunol. 2004 Feb;92(2):262-7.
- [375] Lewis WH, Imber WE. Allergy epidemiology in the St. Louis, Missouri, area. III. Trees. Ann Allergy. 1975;35(2):113-9.
- [376] Eriksson NE Allergy to pollen from different deciduous trees in Sweden. An investigation with skin tests, provocation tests and the radioallergosorbent test (RAST) springtime hay fever patients. Allergy. 1978;33(6):299-309.
- [377] Eriksson NE, Wihl JA, Arrendal H, Strandhede SO. Tree pollen allergy. II. Sensitization to various tree pollen allergens in Sweden. A multi-centre study. Allergy. 1984;39(8):610-7
- Strandhede SO, Wihl JA, Eriksson NE. Tree pollen [378] allergy. I. Features of plant geography and pollen counts. Allergy. 1984;39(8):602-9.
- [379] Eriksson NE, Wihl JA, Arrendal H, Strandhede SO. Tree pollen allergy. III. Cross reactions based on results from skin prick tests and the RAST in hay fever patients. A multi-centre study. Allergy. 1987;42(3):205-14.
- [380] Laurent J, Lafay M, Lattanzi B, Le Gall C, Sauvaget J. Evidence for chestnut pollinosis in Paris [see comments]. Clin Exp Allergy. 1993;23(1):39-43.
- [381] Ghunaim N, Wickman M, Almqvist C, Soderstrom L, Ahlstedt S, van Hage M. Sensitization to different pollens and allergic disease in 4-year-old Swedish children. Clin Exp Allergy. 2006 Jun;36(6):722-7.
- [382] Bousquet J, Guerin B, Hewitt B, Lim S, Michel FB. Allergy in the Mediterranean area. III: Cross reactivity among Oleaceae pollens. Clin Allergy. 1985;15(5):439-48.
- [383] Tamir R, Pick AI, Topilsky M, Kivity S. Olive pollen induces asthmatic response. Clin Exp Allergy. 1991;21(3):329-32.
- [384] Liccardi G, D'Amato M, D'Amato G. Oleaceae pollinosis: a review. Int Arch Allergy Immunol. 1996;111(3):210-7.
- [385] Varela S, Subiza J, Subiza JL, Rodriguez R, Garcia B, Jerez M, et al. Platanus pollen as an important cause of pollinosis. J Allergy Clin Immunol. 1997;100(6 Pt 1):748-54
- [386] Enrique E, Cistero-Bahima A, Bartolome B, Alonso R, San Miguel-Moncin MM, Bartra J, et al. Platanus acerifolia pollinosis and food allergy. Allergy. 2002 Apr;57(4):351-6.
- Bousquet J, Cour P, Guerin B, Michel FB. Allergy in the [387] Mediterranean area. I. Pollen counts and pollinosis of Montpellier. Clin Allergy. 1984;14(3):249-58.
- [388] Bousquet J, Knani J, Hejjaoui A, Ferrando R, Cour P, Dhivert H, et al. Heterogeneity of atopy. I. Clinical and immunologic characteristics of patients allergic to cypress pollen. Allergy. 1993;48(3):183-8.
- [389] Caballero T, Romualdo L, Crespo JF, Pascual C, Munoz-Pereira M, Martin-Esteban M. Cupressaceae pollinosis in the Madrid area. Clin Exp Allergy. 1996;26(2):197-201.
- [390] Barletta B, Afferni C, Tinghino R, Mari A, Di Felice G, Pini C. Cross-reactivity between Cupressus arizonica and

Cupressus sempervirens pollen extracts. J Allergy Clin Immunol. 1996;98(4):797-804.

- [391] Fiorina A, Scordamaglia A, Guerra L, Canonica GW, Passalacqua G. Prevalence of allergy to Cypress. Allergy. 2002 Sep;57(9):861-2.
- [392] Charpin D, Calleja M, Lahoz C, Pichot C, Waisel Y. Allergy to cypress pollen. Allergy. 2005 Mar;60(3):293-301.
- [393] Iacovacci P, Afferni C, Barletta B, Tinghino R, Di Felice G, Pini C, et al. Juniperus oxycedrus: a new allergenic pollen from the Cupressaceae family. J Allergy Clin Immunol. 1998;101(6 Pt 1):755-61.
- [394] Guerin B, Kanny G, Terrasse G, Guyot JL, Moneret-Vautrin DA. Allergic rhinitis to thuja pollen. Int Arch Allergy Immunol. 1996;110(1):91-4.
- [395] Ganbo T, Hisamatsu K, Inoue H, Kitta Y, Nakajima M, Goto R, et al. Detection of specific IgE antibodies to Japanese cypress pollen in patients with nasal allergy: a comparative study with Japanese cedar. Auris Nasus Larynx. 1995;22(3):158-64.
- [396] Ramirez DA. The natural history of mountain cedar pollinosis. J Allergy Clin Immunol. 1984;73(1 Pt 1):88-93.
- [397] Bucholtz GA, Lockey RF, Serbousek D. Bald cypress tree (Taxodium distichum) pollen, an allergen. Ann Allergy. 1985;55(6):805-10.
- [398] Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimaki A. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol. 2002 Sep;46(4):159-70.
- [399] Solomon WR, Burge HA, Muilenberg ML. Allergen carriage by atmospheric aerosol. I. Ragweed pollen determinants in smaller micronic fractions. J Allergy Clin Immunol. 1983;72(5 Pt 1):443-7.
- [400] Suphioglu C, Singh MB, Taylor P, Bellomo R, Holmes P, Puy R, et al. Mechanism of grass-pollen-induced asthma. Lancet. 1992;339(8793):569-72.
- [401] Anto JM, Sunyer J. Thunderstorms: a risk factor for asthma attacks [editorial; comment]. Thorax, 1997;52(8):669-70.
- [402] Bauman A. Asthma associated with thunderstorms [editorial; comment]. Bmj. 1996;312(7031):590-1.
- [403] Bellomo R, Gigliotti P, Treloar A, Holmes P, Suphioglu C, Singh MB, et al. Two consecutive thunderstorm associated epidemics of asthma in the city of Melbourne. The possible role of rye grass pollen. Med J Aust. 1992;156(12):834-7.
- [404] Knox RB. Grass pollen, thunderstorms and asthma. Clin Exp Allergy. 1993;23(5):354-9.
- [405] Venables KM, Allitt U, Collier CG, Emberlin J, Greig JB, Hardaker PJ, et al. Thunderstorm-related asthma--the epidemic of 24/25 June 1994. Clin Exp Allergy. 1997;27(7):725-36.
- [406] Scheiner O, Aberer W, Ebner C, Ferreira F, Hoffmann-Sommergruber K, Hsieh LS, et al. Cross-reacting allergens in tree pollen and pollen-related food allergy: implications for diagnosis of specific IgE. Int Arch Allergy Immunol. 1997;113(1-3):105-8.
- [407] Fedorov AA, Ball T, Mahoney NM, Valenta R, Almo SC. The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure. 1997;5(1):33-45.
- [408] Ipsen H, Lowenstein H. Basic features of crossreactivity in tree and grass pollen allergy. Clin Rev Allergy Immunol, 1997;15(4):389-96.
- [409] Mothes N, Westritschnig K, Valenta R. Tree pollen allergens. Clin Allergy Immunol. 2004;18:165-84.
- [410] Pham NH, Baldo BA. Allergenic relationship between taxonomically diverse pollens. Clin Exp Allergy. 1995;25(7):599-606.
- [411] Freidhoff LR, Ehrlich-Kautzky E, Grant JH, Meyers DA, Marsh DG. A study of the human immune response to Lolium perenne (rye) pollen and its components, Lol p I and Lol p II (rye I and rye II). I. Prevalence of reactivity to the allergens and correlations among skin test, IgE

antibody, and IgG antibody data. J Allergy Clin Immunol. 1986;78(6):1190-201.

- [412] Hiller KM, Esch RE, Klapper DG. Mapping of an allergenically important determinant of grass group I allergens. J Allergy Clin Immunol. 1997;100(3):335-40.
- [413] Mourad W, Mecheri S, Peltre G, David B, Hebert J. Study of the epitope structure of purified Dac G I and Lol p I, the major allergens of Dactylis glomerata and Lolium perenne pollens, using monoclonal antibodies. J Immunol. 1988;141(10):3486-91.
- [414] Matthiesen F, Schumacher MJ, Lowenstein H. Characterization of the major allergen of Cynodon dactylon (Bermuda grass) pollen, Cyn d I. J Allergy Clin Immunol. 1991;88(5):763-74.
- [415] Lovborg U, Baker P, Tovey E. A species-specific monoclonal antibody to Cynodon dactylon. Int Arch Allergy Immunol. 1998;117(4):220-3.
- [416] Phillips JW, Bucholtz GA, Fernandez-Caldas E, Bukantz SC, Lockey RF. Bahia grass pollen, a significant aeroallergen: evidence for the lack of clinical cross-reactivity with timothy grass pollen [see comments]. Ann Allergy. 1989;63(6 Pt 1):503-7.
- [417] Baldo BA, Panzani RC, Bass D, Zerboni R. Olive (Olea europea) and privet (Ligustrum vulgare) pollen allergens. Identification and cross-reactivity with grass pollen proteins. Mol Immunol. 1992;29(10):1209-18.
- [418] Batanero E, Villalba M, Ledesma A, Puente XS, Rodriguez R. Ole e 3, an olive-tree allergen, belongs to a widespread family of pollen proteins. Eur J Biochem. 1996;241(3):772-8.
- [419] Hirschwehr R, Valenta R, Ebner C, Ferreira F, Sperr WR, Valent P, et al. Identification of common allergenic structures in hazel pollen and hazelnuts: a possible explanation for sensitivity to hazelnuts in patients allergic to tree pollen. J Allergy Clin Immunol. 1992;90(6 Pt 1):927-36.
- [420] Mari A, Wallner M, Ferreira F. Fagales pollen sensitization in a birch-free area: a respiratory cohort survey using Fagales pollen extracts and birch recombinant allergens (rBet v 1, rBet v 2, rBet v 4). Clin Exp Allergy. 2003 Oct;33(10):1419-28.
- [421] Pham NH, Baldo BA, Bass DJ. Cypress pollen allergy. Identification of allergens and crossreactivity between divergent species. Clin Exp Allergy. 1994;24(6):558-65.
- [422] Corbi AL, Cortes C, Bousquet J, Basomba A, Cistero A, Garcia-Selles J, et al. Allergenic cross-reactivity among pollens of Urticaceae. Int Arch Allergy Appl Immunol. 1985;77(4):377-83.
- [423] Bousquet J, Hewitt B, Guerin B, Dhivert H, Michel FB. Allergy in the Mediterranean area. II: Cross-allergenicity among Urticaceae pollens (Parietaria and Urtica). Clin Allergy. 1986;16(1):57-64.
- [424] Leiferman KM, Gleich GJ, Jones RT. The crossreactivity of IgE antibodies with pollen allergens. II. Analyses of various species of ragweed and other fall weed pollens. J Allergy Clin Immunol. 1976;58(1 PT. 2):140-8.
- [425] Fernandez C, Martin-Esteban M, Fiandor A, Pascual C, Lopez Serrano C, Martinez Alzamora F, et al. Analysis of cross-reactivity between sunflower pollen and other pollens of the Compositae family. J Allergy Clin Immunol. 1993;92(5):660-7.
- [426] Hirschwehr R, Heppner C, Spitzauer S, Sperr WR, Valent P, Berger U, et al. Identification of common allergenic structures in mugwort and ragweed pollen. J Allergy Clin Immunol. 1998;101(2 Pt 1):196-206.
- [427] Gordon S. Allergy to furred animals [editorial; comment]. Clin Exp Allergy. 1997;27(5):479-81.
- [428] Luczynska CM, Li Y, Chapman MD, Platts-Mills TA. Airborne concentrations and particle size distribution of allergen derived from domestic cats (Felis domesticus). Measurements using cascade impactor, liquid impinger, and a two-site monoclonal antibody assay for Fel d I. Am Rev Respir Dis. 1990;141(2):361-7.
- [429] Wood RA, Chapman MD, Adkinson N, Jr., Eggleston PA. The effect of cat removal on allergen content in

household-dust samples. J Allergy Clin Immunol. 1989;83(4):730-4.

- [430] Konieczny A, Morgenstern JP, Bizinkauskas CB, Lilley CH, Brauer AW, Bond JF, et al. The major dog allergens, Can f 1 and Can f 2, are salivary lipocalin proteins: cloning and immunological characterization of the recombinant forms. Immunology. 1997;92(4):577-86.
- [431] Spitzauer S, Rumpold H, Ebner C, Schweiger C, Valenta R, Gabl F, et al. Allergen profiles of dog hair and dander, body fluids and tissues as defined by immunoblotting. Int Arch Allergy Appl Immunol. 1991;94(1-4):346-8.
- [432] Custovic A, Green R, Fletcher A, Smith A, Pickering CA, Chapman MD, et al. Aerodynamic properties of the major dog allergen Can f 1: distribution in homes, concentration, and particle size of allergen in the air. Am J Respir Crit Care Med. 1997;155(1):94-8.
- [433] Arbes SJ, Jr., Cohn RD, Yin M, Muilenberg ML, Friedman W, Zeldin DC. Dog allergen (Can f 1) and cat allergen (Fel d 1) in US homes: results from the National Survey of Lead and Allergens in Housing. J Allergy Clin Immunol. 2004 Jul;114(1):111-7.
- [434] Wickman M, Egmar A, Emenius G, Almqvist C, Berglind N, Larsson P, et al. Fel d 1 and Can f 1 in settled dust and airborne Fel d 1 in allergen avoidance day-care centres for atopic children in relation to number of pet-owners, ventilation and general cleaning. Clin Exp Allergy. 1999;29(5):626-32.
- [435] Arbes SJ, Sever M, Mehta J, Collette N, Thomas B, Zeldin DC. Exposure to indoor allergens in day-care facilities: results from 2 North Carolina counties. J Allergy Clin Immunol. 2005 Jul;116(1):133-9.
- [436] Berge M, Munir AK, Dreborg S. Concentrations of cat (Fel d1), dog (Can f1) and mite (Der f1 and Der p1) allergens in the clothing and school environment of Swedish schoolchildren with and without pets at home. Pediatr Allergy Immunol. 1998;9(1):25-30.
- [437] Partti-Pellinen K, Marttila O, Makinen-Kiljunen S, Haahtela T. Occurrence of dog, cat, and mite allergens in public transport vehicles. Allergy. 2000 Jan;55(1):65-8.
- [438] Custovic A, Green R, Taggart SC, Smith A, Pickering CA, Chapman MD, et al. Domestic allergens in public places. II: Dog (Can f1) and cockroach (Bla g 2) allergens in dust and mite, cat, dog and cockroach allergens in the air in public buildings [see comments]. Clin Exp Allergy. 1996;26(11):1246-52.
- [439] Custovic A, Simpson A, Pahdi H, Green RM, Chapman MD, Woodcock A. Distribution, aerodynamic characteristics, and removal of the major cat allergen Fel d 1 in British homes. Thorax. 1998;53(1):33-8.
- [440] Gulbahar O, Sin A, Mete N, Kokuludag A, Kirmaz C, Sebik F. Sensitization to cat allergens in non-cat owner patients with respiratory allergy. Ann Allergy Asthma Immunol. 2003 Jun;90(6):635-9.
- [441] Almqvist C, Wickman M, Perfetti L, Berglind N, Renstrom A, Hedren M, et al. Worsening of asthma in children allergic to cats, after indirect exposure to cat at school. Am J Respir Crit Care Med. 2001 Mar;163(3 Pt 1):694-8.
- [442] Almqvist C, Larsson PH, Egmar AC, Hedren M, Malmberg P, Wickman M. School as a risk environment for children allergic to cats and a site for transfer of cat allergen to homes [see comments]. J Allergy Clin Immunol. 1999;103(6):1012-7.
- [443] Bollinger ME, Eggleston PA, Flanagan E, Wood RA. Cat antigen in homes with and without cats may induce allergic symptoms. J Allergy Clin Immunol. 1996;97(4):907-14.
- [444] Wuthrich B, Guerin B, Hewitt BE. Cross-allergenicity between extracts of hair from different dog breeds and cat fur. Clin Allergy. 1985;15(2):87-93.
- [445] Boutin Y, Hebert H, Vrancken ER, Mourad W. Allergenicity and cross-reactivity of cat and dog allergenic extracts. Clin Allergy. 1988;18(3):287-93.
- [446] Spitzauer S, Schweiger C, Sperr WR, Pandjaitan B, Valent P, Muhl S, et al. Molecular characterization of

dog albumin as a cross-reactive allergen. J Allergy Clin Immunol. 1994;93(3):614-27.

- [447] Spitzauer S, Pandjaitan B, Muhl S, Ebner C, Kraft D, Valenta R, et al. Major cat and dog allergens share IgE epitopes. J Allergy Clin Immunol. 1997;99(1 Pt 1):100-6.
- [448] Wahn U, Peters T, Jr., Siraganian RP. Studies on the allergenic significance and structure of rat serum albumin. J Immunol. 1980;125(6):2544-9.
- [449] Bush RK, Wood RA, Eggleston PA. Laboratory animal allergy. J Allergy Clin Immunol. 1998;102(1):99-112.
- [450] Krakowiak A, Szulc B, Gorski P. Allergy to laboratory animals in children of parents occupationally exposed to mice, rats and hamsters [In Process Citation]. Eur Respir J. 1999;14(2):352-6.
- [451] Sjostedt L, Willers S, Orbaek P. A follow-up study of laboratory animal exposed workers: the influence of atopy for the development of occupational asthma. Am J Ind Med. 1993;24(4):459-69.
- [452] Renstrom A, Malmberg P, Larsson K, Sundblad BM, Larsson PH. Prospective study of laboratory-animal allergy: factors predisposing to sensitization and development of allergic symptoms. Allergy. 1994;49(7):548-52.
- [453] Cohn RD, Arbes SJ, Jr., Yin M, Jaramillo R, Zeldin DC. National prevalence and exposure risk for mouse allergen in US households. J Allergy Clin Immunol. 2004 Jun;113(6):1167-71.
- [454] Berrens L, Koers WJ. Allergy to horse dander allergens. Clin Allergy. 1978;8(3):311-2.
- [455] Gregoire C, Rosinski-Chupin I, Rabillon J, Alzari PM, David B, Dandeu JP. cDNA cloning and sequencing reveal the major horse allergen Equ c1 to be a glycoprotein member of the lipocalin superfamily. J Biol Chem. 1996;271(51):32951-9.
- [456] Goubran Botros H, Gregoire C, Rabillon J, David B, Dandeu JP. Cross-antigenicity of horse serum albumin with dog and cat albumins: study of three short peptides with significant inhibitory activity towards specific human IgE and IgG antibodies. Immunology. 1996;88(3):340-7.
- [457] van-Ketel WG, van-Diggelen MW. A farmer with allergy to cows. Contact Dermatitis. 1982;8(4):279.
- [458] Prahl P. Allergens in cow hair and dander. Origin of cow allergens in the environment. Allergy. 1981;36(8):561-71.
- [459] Virtanen T, Zeiler T, Rautiainen J, Taivainen A, Pentikainen J, Rytkonen M, et al. Immune reactivity of cow-asthmatic dairy farmers to the major allergen of cow (BDA20) and to other cow-derived proteins. The use of purified BDA20 increases the performance of diagnostic tests in respiratory cow allergy. Clin Exp Allergy. 1996;26(2):188-96.
- [460] Salvaggio J, Seabury J, Schoehardt E. New Orleans asthma. V. Relationship between Charity Hospital asthma hospitalization rates, semiquantitative pollen and fungal spore counts and total particulate aerometric sampling data. J Allergy. 1971;48:96-105.
- [461] Atkinson RW, Strachan DP, Anderson HR, Hajat S, Emberlin J. Temporal associations between daily counts of fungal spores and asthma exacerbations. Occup Environ Med. 2006 Sep;63(9):580-90.
- [462] Bush RK, Portnoy JM, Saxon A, Terr AI, Wood RA. The medical effects of mold exposure. J Allergy Clin Immunol. 2006 Feb;117(2):326-33.
- [463] Tariq SM, Matthews SM, Stevens M, Hakim EA. Sensitization to Alternaria and Cladosporium by the age of 4 years. Clin Exp Allergy. 1996;26(7):794-8.
- [464] Horner WE, Helbling A, Salvaggio JE, Lehrer SB. Fungal allergens. Clin Microbiol Rev. 1995;8(2):161-79.
- [465] Malling HJ, Dreborg S, Weeke B. Diagnosis and immunotherapy of mould allergy. III. Diagnosis of Cladosporium allergy by means of symptom score, bronchial provocation test, skin prick test, RAST, CRIE and histamine release. Allergy. 1986;41(1):57-67.
- [466] Reijula K, Leino M, Mussalo-Rauhamaa H, Nikulin M, Alenius H, Mikkola J, et al. IgE-mediated allergy to

fungal allergens in Finland with special reference to Alternaria alternata and Cladosporium herbarum. Ann Allergy Asthma Immunol. 2003 Sep;91(3):280-7.

- [467] Fadel R, David B, Paris S, Guesdon JL. Alternaria spore and mycelium sensitivity in allergic patients: in vivo and in vitro studies. Ann Allergy. 1992;69(4):329-35.
- [468] D'Amato G, Chatzigeorgiou G, Corsico R, Gioulekas D, Jager L, Jager S, et al. Evaluation of the prevalence of skin prick test positivity to Alternaria and Cladosporium in patients with suspected respiratory allergy. A European multicenter study promoted by the Subcommittee on Aerobiology and Environmental Aspects of Inhalant Allergens of the European Academy of Allergology and Clinical Immunology. Allergy. 1997;52(7):711-6.
- [469] Corsico R, Cinti B, Feliziani V, Gallesio MT, Liccardi G, Loreti A, et al. Prevalence of sensitization to Alternaria in allergic patients in Italy. Ann Allergy Asthma Immunol. 1998;80(1):71-6.
- [470] Andersson M, Downs S, Mitakakis T, Leuppi J, Marks G. Natural exposure to Alternaria spores induces allergic rhinitis symptoms in sensitized children. Pediatr Allergy Immunol. 2003 Apr;14(2):100-5.
- [471] Solomon WR. A volumetric study of winter fungus prevalence in the air of midwestern homes. J Allergy Clin Immunol. 1976;57(1):46-55.
- [472] Moustafa AF, Kamel SM. A study of fungal spore poupulations in the atmosphere of Kuwait. Mycopathologia. 1976;59(1):29-35.
- [473] Torras MA, Artigas JG, Fernandez GS. Air-borne fungi in the air of Barcelona (Spain). IV. The genus Cladosporium. Mycopathologia. 1981;74(1):19-24.
- [474] Beaumont F, Kauffman HF, Sluiter HJ, de Vries K. A volumetric-aerobiologic study of seasonal fungus prevalence inside and outside dwellings of asthmatic patients living in northeast Netherlands. Ann Allergy. 1984;53(6):486-92.
- [475] Olonitola OS, Dada JD, Galadima M, Odama LE. Fungal spores in the homes of asthmatic patients in Zaria, Nigeria. Ann Allergy. 1994;73(3):273-4.
- [476] Li CS, Hsu LY, Chou CC, Hsieh KH. Fungus allergens inside and outside the residences of atopic and control children [published erratum appears in Arch Environ Health 1996 Jan-Feb;51(1):87]. Arch Environ Health. 1995;50(1):38-43.
- [477] Pumhirun P, Towiwat P, Mahakit P. Aeroallergen sensitivity of Thai patients with allergic rhinitis. Asian Pac J Allergy Immunol. 1997;15(4):183-5.
- [478] Sneller MR, Pinnas JL. Comparison of airborne fungi in evaporative cooled and air conditioned homes. Ann Allergy. 1987;59(4):317-20.
- [479] Katz Y, Verleger H, Barr J, Rachmiel M, Kiviti S, Kuttin ES. Indoor survey of moulds and prevalence of mould atopy in Israel [see comments]. Clin Exp Allergy. 1999;29(2):186-92.
- 1999;29(2):186-92.
  [480] Jaakkola JJ, Jaakkola N, Ruotsalainen R. Home dampness and molds as determinants of respiratory symptoms and asthma in pre-school children. J Expo Anal Environ Epidemiol. 1993;1:129-42.
- [481] Yang CY, Chiu JF, Chiu HF, Kao WY. Damp housing conditions and respiratory symptoms in primary school children. Pediatr Pulmonol. 1997;24(2):73-7.
- [482] Rylander R, Etzel R. Introduction and Summary: Workshop on Children's Health and Indoor Mold Exposure. Environ Health Perspect. 1999;3:465-8.
- [483] Etzel R, Rylander R. Indoor Mold and Children's Health. Environ Health Perspect. 1999;3(463):463.
- [484] Baldo BA, Baker RS. Inhalant allergies to fungi: reactions to bakers' yeast (Saccharomyces cerevisiae) and identification of bakers' yeast enolase as an important allergen. Int Arch Allergy Appl Immunol. 1988;86(2):201-8.
- [485] Lindgren L, Wahlgren CF, Johansson SG, Wiklund I, Nordvall SL. Occurrence and clinical features of sensitization to Pityrosporum orbiculare and other

allergens in children with atopic dermatitis. Acta Derm Venereol. 1995;75(4):300-4.

- [486] Nordvall SL, Johansson S. IgE antibodies to Pityrosporum orbiculare in children with atopic diseases. Acta Paediatr Scand. 1990;79(3):343-8.
- [487] Savolainen J, Lammintausta K, Kalimo K, Viander M. Candida albicans and atopic dermatitis. Clin Exp Allergy. 1993;23(4):332-9.
- [488] Morita E, Hide M, Yoneya Y, Kannbe M, Tanaka A, Yamamoto S. An assessment of the role of Candida albicans antigen in atopic dermatitis. J Dermatol. 1999;26(5):282-7.
- [489] Koivikko A, Kalimo K, Nieminen E, Savolainen J, Viljanen M, Viander M. Allergenic cross-reactivity of yeasts. Allergy. 1988;43(3):192-200.
- [490] Seuri M, Husman K, Kinnunen H, Reiman M, Kreus R, Kuronen P, et al. An outbreak of respiratory diseases among workers at a water-damaged building--a case report. Indoor Air. 2000 Sep;10(3):138-45.
- [491] Horner WE, Helbling A, Lehrer SB. Basidiomycete allergens. Allergy, 1998;53(12):1114-21.
- [492] Lehrer SB, Hughes JM, Altman LC, Bousquet J, Davies RJ, Gell L, et al. Prevalence of basidiomycete allergy in the USA and Europe and its relationship to allergic respiratory symptoms. Allergy. 1994;49(6):460-5.
- [493] Symington IS, Kerr JW, McLean DA. Type I allergy in mushroom soup processors. Clin Allergy. 1981;11(1):43-7.
- [494] Baur X, Liebers V. Insect hemoglobins (Chi tl) of the diptera family Chironomidae are relevant environmental, occupational, and hobby-related allergens. Int Arch Occup Environ Health. 1992;64(3):185-8.
- [495] van-Kampen V, Liebers V, Czuppon A, Baur X. Chironomidae hemoglobin allergy in Japanese, Swedish, and German populations. Allergy. 1994;49(1):9-12.
- [496] Jeong KY, Yum HY, Lee IY, Ree HI, Hong CS, Kim DS, et al. Molecular cloning and characterization of tropomyosin, a major allergen of Chironomus kiiensis, a dominant species of nonbiting midges in Korea. Clin Diagn Lab Immunol. 2004 Mar;11(2):320-4.
- [497] Kay AB, MacLean CM, Wilkinson AH, Gad El Rab MO. The prevalence of asthma and rhinitis in a Sudanese community seasonally exposed to a potent airborne allergen (the "green nimitti" midge, Cladotanytarsus lewisi). J Allergy Clin Immunol. 1983;71(3):345-52.
- [498] Cranston PS, Gad El Rab MO, Tee RD, Kay AB. Immediate-type skin reactivity to extracts of the 'green nimitti' midge, (Cladotanytarsus lewisi), and other chironomids in asthmatic subjects in the Sudan and Egypt. Ann Trop Med Parasitol. 1983;77(5):527-33.
- [499] Lugo G, Cipolla C, Bonfiglioli R, Sassi C, Maini S, Cancellieri MP, et al. A new risk of occupational disease: allergic asthma and rhinoconjunctivitis in persons working with beneficial arthropods. Preliminary data. Int Arch Occup Environ Health. 1994;65(5):291-4.
- [500] Baur X. Chironomid midge allergy. Arerugi. 1992 Feb;41(2 Pt 1):81-5.
- [501] Teranishi H, Kawai K, Murakami G, Miyao M, Kasuya M. Occupational allergy to adult chironomid midges among environmental researchers. Int Arch Allergy Immunol. 1995 Mar;106(3):271-7.
- [502] Eggleston PA, Rosenstreich D, Lynn H, Gergen P, Baker D, Kattan M, et al. Relationship of indoor allergen exposure to skin test sensitivity in inner-city children with asthma. J Allergy Clin Immunol. 1998;102(4 Pt 1):563-70.
- [503] Lewis SA, Weiss ST, Platts-Mills TA, Syring M, Gold DR. Association of specific allergen sensitization with socioeconomic factors and allergic disease in a population of Boston women. J Allergy Clin Immunol. 2001;107(4):615-22.
- [504] Leaderer BP, Belanger K, Triche E, Holford T, Gold DR, Kim Y, et al. Dust mite, cockroach, cat, and dog allergen concentrations in homes of asthmatic children in the northeastern United States: impact of socioeconomic

factors and population density. Environ Health Perspect. 2002;110(4):419-25.

- [505] Cohn RD, Arbes SJ, Jr., Jaramillo R, Reid LH, Zeldin DC. National prevalence and exposure risk for cockroach allergen in U.S. households. Environ Health Perspect. 2006 Apr;114(4):522-6.
- [506] Kang BC, Wilson M, Price KH, Kambara T. Cockroachallergen study: allergen patterns of three common cockroach species probed by allergic sera collected in two cities. J Allergy Clin Immunol. 1991;87(6):1073-80.
- [507] Garcia DP, Corbett ML, Sublett JL, Pollard SJ, Meiners JF, Karibo JM, et al. Cockroach allergy in Kentucky: a comparison of inner city, suburban, and rural small town populations. Ann Allergy. 1994;72(3):203-8.
- [508] Barnes KC, Brenner RJ. Quality of housing and allergy to cockroaches in the Dominican Republic. Int Arch Allergy Immunol. 1996;109(1):68-72.
- [509] Lan JL, Lee DT, Wu CH, Chang CP, Yeh CL. Cockroach hypersensitivity: preliminary study of allergic cockroach asthma in Taiwan. J Allergy Clin Immunol. 1988;82(5 Pt 1):736-40.
- [510] Sakaguchi M, Inouye S, Miyazawa H, Okabe T, Yasueda H, Muto A, et al. Sensitization to cockroach allergens of asthma patients in Japan. Arerugi. 1994;43(11):1309-15.
- [511] Custovic A, Simpson A, Woodcock A. Importance of indoor allergens in the induction of allergy and elicitation of allergic disease. Allergy. 1998;53(48):115-20.
- [512] Riario-Sforza GG, Della-Torre F, Antonicelli L, Bonifazi F, Giordano T, D'Amato G, et al. Sensitization to cockroach in Italy: a multicentric study. Allergy Asthma Proc. 1997;18(1):23-8.
- [513] Sastre J, Ibanez MD, Lombardero M, Laso MT, Lehrer S. Allergy to cockroaches in patients with asthma and rhinitis in an urban area (Madrid). Allergy. 1996;51(8):582-6.
- [514] Lodrup Carlsen KC, Carlsen KH, Buchmann MS, Wikstrom J, Mehl R. Cockroach sensitivity in Norway: a previously unidentified problem? Allergy. 2002 Jun;57(6):529-33.
- [515] Pepys J, Wells ID, D'Souza MF, Greenberg M. Clinical and immunological responses to enzymes of Bacillus subtilis in factory workers and consumers. Clin Allergy. 1973;3(2):143-60.
- [516] Flood DF, Blofeld RE, Bruce CF, Hewitt JI, Juniper CP, Roberts DM. Lung function, atopy, specific hypersensitivity, and smoking of workers in the enzyme detergent industry over 11 years. Br J Ind Med. 1985;42(1):43-50.
- [517] Axelsson IG, Johansson SG, Zetterstrom O. A new indoor allergen from a common non-flowering plant. Allergy. 1987;42(8):604-11.
- [518] Brehler R, Abrams E, Sedlmayr S. Cross-reactivity between Ficus benjamina (weeping fig) and natural rubber latex. Allergy. 1998;53(4):402-6.
- [519] Bircher AJ, Langauer S, Levy F, Wahl R. The allergen of Ficus benjamina in house dust [see comments]. Clin Exp Allergy. 1995;25(3):228-33.
- [520] Mahillon V, Saussez S, Michel O. High incidence of sensitization to ornamental plants in allergic rhinitis. Allergy. 2006 Sep;61(9):1138-40.
- [521] Bahna SL, Heiner DC. Cow's milk allergy: pathogenesis, manifestations, diagnosis and management. Adv Pediatr. 1978;25:1-37.
- [522] Hourihane J, Kilburn S, Dean P, Warner J. Clinical characteristics of peanut allergy. Clin Exp Allergy. 1997;27:634-9.
- [523] Bousquet J, Bjorksten B, Bruijnzeel-Koomen CA, Huggett A, Ortolani C, Warner JO, et al. Scientific criteria and the selection of allergenic foods for product labelling. Allergy. 1998;53(47 Suppl):3-21.
- [524] Kleine-Tebbe J, Vogel L, Crowell DN, Haustein UF, Vieths S. Severe oral allergy syndrome and anaphylactic reactions caused by a Bet v 1- related PR-10 protein in soybean, SAM22. J Allergy Clin Immunol. 2002 Nov;110(5):797-804.

- [525] Egger M, Mutschlechner S, Wopfner N, Gadermaier G, Briza P, Ferreira F. Pollen-food syndromes associated with weed pollinosis: an update from the molecular point of view. Allergy. 2006 Apr;61(4):461-76.
- [526] Bohle B. The impact of pollen-related food allergens on pollen allergy. Allergy. 2007 Jan;62(1):3-10.
- [527] Eriksson NE, Formgren H, Svenonius E. Food hypersensitivity in patients with pollen allergy. Allergy. 1982;37(6):437-43.
- [528] Pastorello EA, Pravettoni V, Ispano M, Farioli L, Ansaloni R, Rotondo F, et al. Identification of the allergenic components of kiwi fruit and evaluation of their cross-reactivity with timothy and birch pollens. J Allergy Clin Immunol. 1996;98(3):601-10.
- [529] Ebner C, Birkner T, Valenta R, Rumpold H, Breitenbach M, Scheiner O, et al. Common epitopes of birch pollen and apples--studies by western and northern blot. J Allergy Clin Immunol. 1991;88(4):588-94.
- [530] Mittag D, Vieths S, Vogel L, Wagner-Loew D, Starke A, Hunziker P, et al. Birch pollen-related food allergy to legumes: identification and characterization of the Bet v 1 homologue in mungbean (Vigna radiata), Vig r 1. Clin Exp Allergy, 2005 Aug;35(8):1049-55.
- [531] Ricci G, Righetti F, Menna G, Bellini F, Miniaci A, Masi M. Relationship between Bet v 1 and Bet v 2 specific IgE and food allergy in children with grass pollen respiratory allergy. Mol Immunol. 2005 Jun;42(10):1251-7.
- [532] Lombardero M, Garcia-Selles FJ, Polo F, Jimeno L, Chamorro MJ, Garcia-Casado G, et al. Prevalence of sensitization to Artemisia allergens Art v 1, Art v 3 and Art v 60 kDa. Cross-reactivity among Art v 3 and other relevant lipid-transfer protein allergens. Clin Exp Allergy. 2004 Sep;34(9):1415-21.
- Bauer L, Ebner C, Hirschwehr R, Wuthrich B, Pichler C, Fritsch R, et al. IgE cross-reactivity between birch pollen, mugwort pollen and celery is due to at least three distinct cross-reacting allergens: immunoblot investigation of the birch-mugwort-celery syndrome. Clin Exp Allergy. 1996;26(10):1161-70.
- [534] Pauli G, Bessot JC, Dietemann-Molard A, Braun PA, Thierry R. Celery sensitivity: clinical and immunological correlations with pollen allergy. Clin Allergy. 1985;15(3):273-9.
- [535] Wuthrich B, Stager J, Johansson SG. Celery allergy associated with birch and mugwort pollinosis. Allergy. 1990;45(8):566-71.
- [536] Enberg RN, Leickly FE, McCullough J, Bailey J, Ownby DR. Watermelon and ragweed share allergens. J Allergy Clin Immunol. 1987;79(6):867-75.
- [537] Garcia Ortiz JC, Cosmes Martin P, Lopez-Asunolo A. Melon sensitivity shares allergens with Plantago and grass pollens. Allergy. 1995;50(3):269-73.
- [538] Charpin D, Hughes B, Mallea M, Sutra JP, Balansard G, Vervloet D. Seasonal allergic symptoms and their relation to pollen exposure in south-east France. Clin Exp Allergy. 1993 May;23(5):435-9.
- [539] Kondo Y, Tokuda R, Urisu A, Matsuda T. Assessment of cross-reactivity between Japanese cedar (Cryptomeria japonica) pollen and tomato fruit extracts by RAST inhibition and immunoblot inhibition. Clin Exp Allergy. 2002 Apr;32(4):590-4.
- [540] Mortz CG, Andersen KE, Bindslev-Jensen C. The prevalence of peanut sensitization and the association to pollen sensitization in a cohort of unselected adolescents--The Odense Adolescence Cohort Study on Atopic Diseases and Dermatitis (TOACS). Pediatr Allergy Immunol. 2005 Sep;16(6):501-6.
- [541] Jones SM, Magnolfi CF, Cooke SK, Sampson HA. Immunologic cross-reactivity among cereal grains and grasses in children with food hypersensitivity. J Allergy Clin Immunol. 1995;96(3):341-51.
- [542] M'Raihi L, Charpin D, Pons A, Bongrand P, Vervloet D. Cross-reactivity between latex and banana. J Allergy Clin Immunol. 1991;87(1 Pt 1):129-30.
- [543] Moller M, Kayma M, Vieluf D, Paschke A, Steinhart H. Determination and characterization of cross-reacting

allergens in latex, avocado, banana, and kiwi fruit. Allergy. 1998;53(3):289-96.

- [544] Moneret-Vautrin DA, Guerin L, Kanny G, Flabbee J, Fremont S, Morisset M. Cross-allergenicity of peanut and lupine: the risk of lupine allergy in patients allergic to peanuts. J Allergy Clin Immunol. 1999 Oct;104(4 Pt 1):883-8.
- [545] Burks W, Bannon GA, Sicherer S, Sampson HA. Peanut-Induced Anaphylactic Reactions. Int Arch Allergy Immunol. 1999;119(3):165-72.
- [546] Ferreira F, Hawranek T, Gruber P, Wopfner N, Mari A. Allergic cross-reactivity: from gene to the clinic. Allergy. 2004 Mar;59(3):243-67.
- [547] Radauer C, Willerroider M, Fuchs H, Hoffmann-Sommergruber K, Thalhamer J, Ferreira F, et al. Crossreactive and species-specific immunoglobulin E epitopes of plant profilins: an experimental and structure-based analysis. Clin Exp Allergy. 2006 Jul;36(7):920-9.
- [548] Mothes N, Valenta R. Biology of tree pollen allergens. Curr Allergy Asthma Rep. 2004 Sep;4(5):384-90.
- [549] Breiteneder H, Hoffmann-Sommergruber K, O'Riordain G, Susani M, Ahorn H, Ebner C, et al. Molecular characterization of Api g 1, the major allergen of celery (Apium graveolens), and its immunological and structural relationships to a group of 17-kDa tree pollen allergens. Eur J Biochem. 1995;233(2):484-9.
- [550] Menz G, Dolecek C, Schonheit-Kenn U, Ferreira F, Moser M, Schneider T, et al. Serological and skin-test diagnosis of birch pollen allergy with recombinant Bet v I, the major birch pollen allergen. Clin Exp Allergy. 1996;26(1):50-60.
- [551] Valenta R, Duchene M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, et al. Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science. 1991;253(5019):557-60.
- [552] Ebner C, Hirschwehr R, Bauer L, Breiteneder H, Valenta R, Hoffmann K, et al. Identification of allergens in apple, pear, celery, carrot and potato: cross-reactivity with pollen allergens. Monogr Allergy. 1996;32:73-7.
- [553] Hoffmann-Sommergruber K, Demoly P, Crameri R, Breiteneder H, Ebner C, Laimer Da Camara Machado M, et al. IgE reactivity to Api g 1, a major celery allergen, in a Central European population is based on primary sensitization by Bet v 1. J Allergy Clin Immunol. 1999;104(2 Pt 1):478-84.
- [554] Pastorello EA, Ortolani C, Farioli L, Pravettoni V, Ispano M, Borga A, et al. Allergenic cross-reactivity among peach, apricot, plum, and cherry in patients with oral allergy syndrome: an in vivo and in vitro study. J Allergy Clin Immunol. 1994;94(4):699-707.
- [555] Ebner C, Hirschwehr R, Bauer L, Breiteneder H, Valenta R, Ebner H, et al. Identification of allergens in fruits and vegetables: IgE cross-reactivities with the important birch pollen allergens Bet v 1 and Bet v 2 (birch profilin). J Allergy Clin Immunol. 1995;95(5 Pt 1):962-9.
- [556] Sanchez-Monge R, Lombardero M, Garcia-Selles FJ, Barber D, Salcedo G. Lipid-transfer proteins are relevant allergens in fruit allergy. J Allergy Clin Immunol. 1999;103(3 Pt 1):514-9.
- [557] Pastorello EA, Farioli L, Pravettoni V, Ortolani C, Ispano M, Monza M, et al. The major allergen of peach (Prunus persica) is a lipid transfer protein. J Allergy Clin Immunol. 1999;103(3 Pt 1):520-6.
- [558] Vandenplas O, Malo JL. Definitions and types of workrelated asthma. a nosological approach. Eur Respir J. 2003 Apr;21(4):706-12.
- [559] Malo JL. Future advances in work-related asthma and the impact on occupational health. Occup Med (Lond). 2005 Dec;55(8):606-11.
- [560] Eisner MD, Yelin EH, Katz PP, Lactao G, Iribarren C, Blanc PD. Risk factors for work disability in severe adult asthma. Am J Med. 2006 Oct;119(10):884-91.
- [561] Henneberger PK, Derk SJ, Sama SR, Boylstein RJ, Hoffman CD, Preusse PA, et al. The frequency of workplace exacerbation among health maintenance

organisation members with asthma. Occup Environ Med. 2006 Aug;63(8):551-7.

- [562] Lamb CE, Ratner PH, Johnson CE, Ambegaonkar AJ, Joshi AV, Day D, et al. Economic impact of workplace productivity losses due to allergic rhinitis compared with select medical conditions in the United States from an employer perspective. Curr Med Res Opin. 2006 Jun;22(6):1203-10.
- [563] Groneberg DA, Nowak D, Wussow A, Fischer A. Chronic cough due to occupational factors. J Occup Med Toxicol. 2006;1:3.
- [564] Tarlo SM. Cough: occupational and environmental considerations: ACCP evidence-based clinical practice guidelines. Chest. 2006 Jan;129(1 Suppl):186S-96S.
- [565] Balmes J, Becklake M, Blanc P, Henneberger P, Kreiss K, Mapp C, et al. American Thoracic Society Statement: Occupational contribution to the burden of airway disease. Am J Respir Crit Care Med. 2003 Mar 1;167(5):787-97.
- [566] Latza U, Baur X. Occupational obstructive airway diseases in Germany: Frequency and causes in an international comparison. Am J Ind Med. 2005 Aug;48(2):144-52.
- [567] Orriols R, Costa R, Albanell M, Alberti C, Castejon J, Monso E, et al. Reported occupational respiratory diseases in Catalonia. Occup Environ Med. 2006 Apr;63(4):255-60.
- [568] Pauli G, Birba NE. Recent developments in airway and nose occupational sensitizers. Curr Opin Allergy Clin Immunol. 2003 Apr;3(2):95-100.
- [569] Piipari R, Keskinen H. Agents causing occupational asthma in Finland in 1986-2002: cow epithelium bypassed by moulds from moisture-damaged buildings. Clin Exp Allergy. 2005 Dec;35(12):1632-7.
- [570] Malo JL, Ghezzo H, Elie R. Occupational asthma caused by isocyanates: patterns of asthmatic reactions to increasing day-to-day doses. Am J Respir Crit Care Med. 1999 Jun;159(6):1879-83.
- [571] Wilhelmsson B, Jernudd Y, Ripe E, Holmberg K. Nasal hypersensitivity in wood furniture workers. An allergological and immunological investigation with special reference to mould and wood. Allergy. 1984;39(8):586-95.
- [572] Kanerva L, Vaheri E. Occupational allergic rhinitis in Finland. Int Arch Occup Environ Health. 1993;64(8):565-8.
- [573] Nielsen J, Welinder H, Bensryd I, Rylander L, Skerfving S. Ocular and airway symptoms related to organic acid anhydride exposure--a prospective study. Allergy. 2006 Jun;61(6):743-9.
- [574] Piirila P, Hodgson U, Estlander T, Keskinen H, Saalo A, Voutilainen R, et al. Occupational respiratory hypersensitivity in dental personnel. Int Arch Occup Environ Health. 2002 Apr;75(4):209-16.
- [575] Burge PS, Perks W, O'Brien IM, Hawkins R, Green M. Occupational asthma in an electronics factory. Thorax. 1979 Feb;34(1):13-8.
- [576] Bardana EJ, Jr., Andrach RH. Occupational asthma secondary to low molecular weight agents used in the plastic and resin industries. Eur J Respir Dis. 1983 May;64(4):241-51.
- [577] Lopata AL, Fenemore B, Jeebhay MF, Gade G, Potter PC. Occupational allergy in laboratory workers caused by the African migratory grasshopper Locusta migratoria. Allergy. 2005 Feb;60(2):200-5.
- [578] Kopferschmit-Kubler MC, Stenger R, Blaumeiser M, Eveilleau C, Bessot JC, Pauli G. [Asthma, rhinitis and urticaria following occupational exposure to cyanoacrylate glues]. Rev Mal Respir. 1996 Jul;13(3):305-7.
- [579] Leino T, Tammilehto L, Hytonen M, Sala E, Paakkulainen H, Kanerva L. Occupational skin and respiratory diseases among hairdressers. Scand J Work Environ Health. 1998 Oct;24(5):398-406.

- [580] Moscato G, Pignatti P, Yacoub MR, Romano C, Spezia S, Perfetti L. Occupational asthma and occupational rhinitis in hairdressers. Chest. 2005 Nov;128(5):3590-8.
- [581] Ruoppi P, Koistinen T, Susitaival P, Honkanen J, Soininen H. Frequency of allergic rhinitis to laboratory animals in university employees as confirmed by chamber challenges. Allergy. 2004 Mar;59(3):295-301.
- [582] Slovak AJ, Hill RN. Laboratory animal allergy: a clinical survey of an exposed population. Br J Ind Med. 1981;38(1):38-41.
- [583] Venables KM, Upton JL, Hawkins ER, Tee RD, Longbottom JL, Newman Taylor AJ. Smoking, atopy, and laboratory animal allergy. Br J Ind Med. 1988;45(10):667-71.
- [584] Wakelin SH, White IR. Natural rubber latex allergy. Clin Exp Dermatol. 1999;24(4):245-8.
- [585] Tarlo SM. Natural rubber latex allergy and asthma. Curr Opin Pulm Med. 2001 Jan;7(1):27-31.
- [586] Jaeger D, Kleinhans D, Czuppon AB, Baur X. Latexspecific proteins causing immediate-type cutaneous, nasal, bronchial, and systemic reactions. J Allergy Clin Immunol. 1992;89(3):759-68.
- [587] Hamilton RG, Adkinson N, Jr. Diagnosis of natural rubber latex allergy: multicenter latex skin testing efficacy study. Multicenter Latex Skin Testing Study Task Force [see comments]. J Allergy Clin Immunol. 1998;102(3):482-90.
- [588] Turjanmaa K, Palosuo T, Alenius H, Leynadier F, Autegarden JE, Andre C, et al. Latex allergy diagnosis: in vivo and in vitro standardization of a natural rubber latex extract. Allergy. 1997;52(1):41-50.
- [589] Musk AW, Venables KM, Crook B, Nunn AJ, Hawkins R, Crook GD, et al. Respiratory symptoms, lung function, and sensitisation to flour in a British bakery. Br J Ind Med. 1989;46(9):636-42.
- [590] Brisman J, Jarvholm B. Bakery work, atopy and the incidence of self-reported hay fever and rhinitis. Eur Respir J. 1999;13(3):502-7.
- [591] Ehrlich R, Prescott R. Baker's asthma with a predominant clinical response to rye flour. Am J Ind Med. 2005 Aug;48(2):153-5.
- [592] Elms J, Fishwick D, Walker J, Rawbone R, Jeffrey P, Griffin P, et al. Prevalence of sensitisation to cellulase and xylanase in bakery workers. Occup Environ Med. 2003 Oct;60(10):802-4.
- [593] Makinen-Kiljunen S, Mussalo-Rauhamaa H, Petman L, Rinne J, Haahtela T. A baker's occupational allergy to flour moth (Ephestia kuehniella). Allergy. 2001 Jul;56(7):696-700.
- [594] Baur X, Degens PO, Sander I. Baker's asthma: still among the most frequent occupational respiratory disorders. J Allergy Clin Immunol. 1998;102(6 Pt 1):984-97.
- [595] Storaas T, Steinsvag SK, Florvaag E, Irgens A, Aasen TB. Occupational rhinitis: diagnostic criteria, relation to lower airway symptoms and IgE sensitization in bakery workers. Acta Otolaryngol. 2005 Nov;125(11):1211-7.
- [596] Quirce S, Fernandez-Nieto M, Escudero C, Cuesta J, de Las Heras M, Sastre J. Bronchial responsiveness to bakery-derived allergens is strongly dependent on specific skin sensitivity. Allergy. 2006 Oct;61(10):1202o
- [597] Choudat D, Bensefa L, Causse-Sounillac E, Conso F. Methacholine bronchial responsiveness and variations in lung function among workers exposed to flour. Scand J Work Environ Health. 2005 Feb;31(1):59-64.
- [598] Larese F, Fiorito A, Casasola F, Molinari S, Peresson M, Barbina P, et al. Sensitization to green coffee beans and work-related allergic symptoms in coffee workers. Am J Ind Med. 1998;34(6):623-7.
- [599] Pepys J, Mitchell J, Hawkins R, Malo JL. A longitudinal study of possible allergy to enzyme detergents. Clin Allergy. 1985;15(2):101-15.
- [600] Johnsen CR, Sorensen TB, Ingemann Larsen A, Bertelsen Secher A, Andreasen E, Kofoed GS, et al. Allergy risk in an enzyme producing plant: a

retrospective follow up study. Occup Environ Med. 1997;54(9):671-5.

- [601] Park HS, Nahm DH. New occupational allergen in a pharmaceutical industry: serratial peptidase and lysozyme chloride. Ann Allergy Asthma Immunol. 1997;78(2):225-9.
- [602] Baur X. Enzymes as occupational and environmental respiratory sensitisers. Int Arch Occup Environ Health. 2005 May;78(4):279-86.
- [603] Giavina BP, Jr., Castro FF, Machado ML, Duarte AJ. Occupational respiratory allergic disease induced by Passiflora alata and Rhamnus purshiana. Ann Allergy Asthma Immunol. 1997;79(5):449-54.
- [604] Akpinar-Elci M, Elci OC, Odabasi A. Work-related asthma-like symptoms among florists. Chest. 2004 Jun;125(6):2336-9.
- [605] Sastre J, Vandenplas Q, Park HS. Pathogenesis of occupational asthma. Eur Respir J. 2003 Aug;22(2):364-73.
- [606] Graham C, Rosenkranz HS, Karol MH. Structure-activity model of chemicals that cause human respiratory sensitization. Regul Toxicol Pharmacol. 1997 Dec;26(3):296-306.
- [607] Agius RM. Why are some low-molecular-weight agents asthmagenic. Occup Med. 2000 Apr-Jun;15(2):369-84.
- [608] Jones MG, Floyd A, Nouri-Aria KT, Jacobson MR, Durham SR, Taylor AN, et al. Is occupational asthma to diisocyanates a non-IgE-mediated disease? J Allergy Clin Immunol. 2006 Mar;117(3):663-9.
- [609] Sari-Minodier I, Charpin D, Signouret M, Poyen D, Vervloet D. Prevalence of self-reported respiratory symptoms in workers exposed to isocyanates. J Occup Environ Med. 1999;41(7):582-8.
- (610) Yokota K, Johyama Y, Yamaguchi K, Takeshita T, Morimoto K. Exposure-response relationships in rhinitis and conjunctivitis caused by methyltetrahydrophthalic anhydride. Int Arch Occup Environ Health. 1999;72(1):14-8.
- [611] Piirila P, Estlander T, Hytonen M, Keskinen H, Tupasela O, Tuppurainen M. Rhinitis caused by ninhydrin develops into occupational asthma. Eur Respir J. 1997;10(8):1918-21.
- [612] Moscato G, Galdi E, Scibilia J, Dellabianca A, Omodeo P, Vittadini G, et al. Occupational asthma, rhinitis and urticaria due to piperacillin sodium in a pharmaceutical worker. Eur Respir J. 1995;8(3):467-9.
- [613] Moscato G, Omodeo P, Dellabianca A, Colli MC, Pugliese F, Locatelli C, et al. Occupational asthma and rhinitis caused by 1,2-benzisothiazolin-3-one in a chemical worker. Occup Med Oxf. 1997;47(4):249-51.
- [614] Bousquet J, Michel FB. Allergy to formaldehyde and ethylene-oxide. Clin Rev Allergy. 1991;9(3-4):357-70.
- [615] Maurice F, Rivory JP, Larsson PH, Johansson SG, Bousquet J. Anaphylactic shock caused by formaldehyde in a patient undergoing long-term hemodialysis. J Allergy Clin Immunol. 1986;77(4):594-7.
- [616] Dykewicz MS, Patterson R, Cugell DW, Harris KE, Wu AF. Serum IgE and IgG to formaldehyde-human serum albumin: lack of relation to gaseous formaldehyde exposure and symptoms. J Allergy Clin Immunol. 1991;87(1 Pt 1):48-57.
- [617] Norback D, Bjornsson E, Janson C, Widstrom J, Boman G. Asthmatic symptoms and volatile organic compounds, formaldehyde, and carbon dioxide in dwellings. Occup Environ Med. 1995;52(6):388-95.
- [618] Wantke F, Demmer CM, Tappler P, Gotz M, Jarisch R. Exposure to gaseous formaldehyde induces IgE-mediated sensitization to formaldehyde in school-children. Clin Exp Allergy. 1996;26(3):276-80.
- [619] Smedley J. Is formaldehyde an important cause of allergic respiratory disease? [editorial]. Clin Exp Allergy. 1996;26(3):247-9.
- [620] van Sprundel MP. Pneumoconioses: the situation in developing countries. Exp Lung Res. 1990;16(1):5-13.

- [621] Rees D, Weiner R. Dust and pneumoconiosis in the South African foundry industry. S Afr Med J. 1994;84(12):851-5.
- [622] Loewenson R. Assessment of the health impact of occupational risk in Africa: current situation and methodological issues. Epidemiology. 1999;10(5):632-9.
- [623] Davies JC. Silicosis and tuberculosis among South African goldminers--an overview of recent studies and current issues. S Afr Med J. 2001;91(7):562-6.
- [624] Yach D, Myers J, Bradshaw D, Benatar SR. A respiratory epidemiologic survey of grain mill workers in Cape Town, South Africa. Am Rev Respir Dis. 1985;131(4):505-10.
- [625] Fatusi A, Erhabor G. Occupational health status of sawmill workers in Nigeria. J R Soc Health. 1996;116(4):232-6.
- [626] Ige OM, Onadeko OB. Respiratory symptoms and ventilatory function of the sawmillers in Ibadan, Nigeria. Afr J Med Med Sci. 2000 Jun;29(2):101-4.
- [627] Hnizdo E, Churchyard G, Dowdeswel R. Lung function prediction equations derived from healthy South African gold miners. Occup Environ Med. 2000;57(10):698-705.
- [628] Osim EE, Musabayane CT, Mufunda J. Lung function of Zimbabwean farm workers exposed to flue curing and stacking of tobacco leaves. S Afr Med J. 1998;88(9):1127-31.
- [629] Osim EE, Tandayi M, Chinyanga HM, Matarira HT, Mudambo KK, Musabayane CT. Lung function, blood gases, pH and serum electrolytes of small-scale miners exposed to chrome ore dust on the Great Dyke in Zimbabwe. Trop Med Int Health. 1999;4(9):621-8.
- [630] Mengesha YA, Bekele A. Relative chronic effects of different occupational dusts on respiratory indices and health of workers in three Ethiopian factories. Am J Ind Med. 1998 Oct;34(4):373-80.
- [631] Rees D, Nelson G, Kielkowski D, Wasserfall C, da Costa A. Respiratory health and immunological profile of poultry workers. S Afr Med J. 1998 Sep;88(9):1110-7.
- [632] Singh AB, Singh A, Pandit T. Respiratory diseases among agricultural industry workers in India. A crosssectional epidemiological study. Ann Agric Environ Med. 1999;6(2):115-26.
- [633] Potter PC, Crombie I, Marian A, Kosheva O, Maqula B, Schinkel M. Latex allergy at Groote Schuur Hospital-prevalence, clinical features and outcome. S Afr Med J. 2001 Sep;91(9):760-5.
- [634] Zhou W, Yuan D, Ye S, Qi P, Fu C, Christiani DC. Health effects of occupational exposures to vehicle emissions in Shanghai. Int J Occup Environ Health. 2001 Jan-Mar;7(1):23-30.
- [635] Ajaiyeoba AI. Prevalence of atopic diseases in Nigerian children with vernal kerato-conjunctivitis. West Afr J Med. 2003 Jan-Mar;22(1):15-7.
- [636] Falade AG, Olawuyi JF, Osinusi K, Onadeko BO. Prevalence and severity of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema in 6- to 7-year-old Nigerian primary school children: the international study of asthma and allergies in childhood. Med Princ Pract. 2004 Jan-Feb;13(1):20-5.
- [637] Ijadunola KT, Erhabor GE, Onayade AA, Ijadunola MY, Fatusi AO, Asuzu MC. Prevalence of respiratory symptoms among wheat flour mill workers in Ibadan, Nigeria. Am J Ind Med. 2004 Mar;45(3):251-9.
- [638] Omokhodion FO, Kolude OO. Health problems of mill operators in a tropical African population. West Afr J Med. 2005 Jul-Sep;24(3):256-8.
- [639] Esterhuizen TM, Hnizdo E, Rees D, Lalloo UG, Kielkowski D, van Schalkwyk EM, et al. Occupational respiratory diseases in South Africa--results from SORDSA, 1997-1999. S Afr Med J. 2001 Jun;91(6):502-
- [640] Esterhuizen TM, Hnizdo E, Rees D. Occurrence and causes of occupational asthma in South Africa--results from SORDSA's Occupational Asthma Registry, 1997-1999. S Afr Med J. 2001 Jun;91(6):509-13.

- [641] Hnizdo E, Esterhuizen TM, Rees D, Lalloo UG. Occupational asthma as identified by the Surveillance of Work-related and Occupational Respiratory Diseases programme in South Africa. Clin Exp Allergy. 2001 Jan;31(1):32-9.
- [642] Kramer U, Koch T, Ranft U, Ring J, Behrendt H. Trafficrelated air pollution is associated with atopy in children living in urban areas. Epidemiology. 2000 Jan;11(1):64-70.
- [643] Lee YL, Shaw CK, Su HJ, Lai JS, Ko YC, Huang SL, et al. Climate, traffic-related air pollutants and allergic rhinitis prevalence in middle-school children in Taiwan. Eur Respir J. 2003 Jun;21(6):964-70.
- [644] Miyamoto T. Epidemiology of pollution-induced airway disease in Japan. Allergy. 1997;52(38 Suppl):30-4; discussion 5-6.
- [645] Ishizaki T, Koizumi K, Ikemori R, Ishiyama Y, Kushibiki E. Studies of prevalence of Japanese cedar pollinosis among the residents in a densely cultivated area. Ann Allergy 1987;58(4):265-70.
- [646] Janssen NA, Brunekreef B, van Vliet P, Aarts F, Meliefste K, Harssema H, et al. The relationship between air pollution from heavy traffic and allergic sensitization, bronchial hyperresponsiveness, and respiratory symptoms in Dutch schoolchildren. Environ Health Perspect. 2003 Sep;111(12):1512-8.
- [647] Penard-Morand C, Charpin D, Raherison C, Kopferschmitt C, Caillaud D, Lavaud F, et al. Long-term exposure to background air pollution related to respiratory and allergic health in schoolchildren. Clin Exp Allergy. 2005 Oct;35(10):1279-87.
- [648] Yu JH, Lue KH, Lu KH, Sun HL, Lin YH, Chou MC. The relationship of air pollution to the prevalence of allergic diseases in Taichung and Chu-Shan in 2002. J Microbiol Immunol Infect. 2005 Apr;38(2):123-6.
- [649] Hwang BF, Jaakkola JJ, Lee YL, Lin YC, Guo YL.
   Relation between air pollution and allergic rhinitis in Taiwanese schoolchildren. Respir Res. 2006;7:23.
- [650] de Marco R, Poli A, Ferrari M, Accordini S, Giammanco G, Bugiani M, et al. The impact of climate and trafficrelated NO2 on the prevalence of asthma and allergic rhinitis in Italy. Clin Exp Allergy. 2002 Oct;32(10):1405-12.
- [651] Keles N, Ilicali C, Deger K. The effects of different levels of air pollution on atopy and symptoms of allergic rhinitis [In Process Citation]. Am J Rhinol. 1999;13(3):185-90.
- [652] Premaratna R, Pathmeswaran A, Chandrasekara B, Dissanayake AS, de Silva HJ. Effects of pollution on health of residents in an industrial area in Sri Lanka. Arch Environ Health. 2002 Nov-Dec;57(6):579-83.
- [653] Sichletidis L, Tsiotsios I, Gavriilidis A, Chloros D, Gioulekas D, Kottakis I, et al. The effects of environmental pollution on the respiratory system of children in western Macedonia, Greece. J Investig Allergol Clin Immunol. 2005;15(2):117-23.
- [654] Wongsurakiat P, Maranetra KN, Nana A, Naruman C, Aksornint M, Chalermsanyakorn T. Respiratory symptoms and pulmonary function of traffic policemen in Thonburi. J Med Assoc Thai. 1999;82(5):435-43.
- [655] Chen PC, Lai YM, Wang JD, Yang CY, Hwang JS, Kuo HW, et al. Adverse effect of air pollution on respiratory health of primary school children in Taiwan. Environ Health Perspect. 1998;106(6):331-5.
- [656] Corbo GM, Forastiere F, Dell'Orco V, Pistelli R, Agabiti N, De Stefanis B, et al. Effects of environment on atopic status and respiratory disorders in children. J Allergy Clin Immunol. 1993;92(4):616-23.
- [657] Kuehni CE, Strippoli MP, Zwahlen M, Silverman M. Association between reported exposure to road traffic and respiratory symptoms in children: evidence of bias. Int J Epidemiol. 2006 Jun;35(3):779-86.
- [658] Saxon A, Diaz-Sanchez D. Air pollution and allergy: you are what you breathe. Nat Immunol. 2005 Mar;6(3):223-6.

- [659] Diaz-Sanchez D, Tsien A, Fleming J, Saxon A. Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweed-specific IgE and skews cytokine production to a T helper cell 2-type pattern. J Immunol. 1997;158(5):2406-13.
- [660] Diaz-Sanchez D, Tsien A, Casillas A, Dotson AR, Saxon A. Enhanced nasal cytokine production in human beings after in vivo challenge with diesel exhaust particles. J Allergy Clin Immunol. 1996;98(1):114-23.
- [661] Boland S, Baeza-Squiban A, Fournier T, Houcine O, Gendron MC, Chevrier M, et al. Diesel exhaust particles are taken up by human airway epithelial cells in vitro and alter cytokine production. Am J Physiol. 1999;276(4 Pt 1):L604-13.
- [662] Fahy O, Tsicopoulos A, Hammad H, Pestel J, Tonnel AB, Wallaert B. Effects of diesel organic extracts on chemokine production by peripheral blood mononuclear cells. J Allergy Clin Immunol. 1999;103(6):1115-24.
- [663] Kongerud J, Madden MC, Hazucha M, Peden D. Nasal responses in asthmatic and nonasthmatic subjects following exposure to diesel exhaust particles. Inhal Toxicol. 2006 Aug;18(9):589-94.
- [664] Ohtani T, Nakagawa S, Kurosawa M, Mizuashi M, Ozawa M, Aiba S. Cellular basis of the role of diesel exhaust particles in inducing Th2-dominant response. J Immunol. 2005 Feb 15;174(4):2412-9.
- [665] Chang Y, Senechal S, de Nadai P, Chenivesse C, Gilet J, Vorng H, et al. Diesel exhaust exposure favors TH2 cell recruitment in nonatopic subjects by differentially regulating chemokine production. J Allergy Clin Immunol. 2006 Aug;118(2):354-60.
- [666] Mamessier E, Nieves A, Vervloet D, Magnan A. Diesel exhaust particles enhance T-cell activation in severe asthmatics. Allergy. 2006 May;61(5):581-8.
- [667] Knox RB, Suphioglu C, Taylor P, Desai R, Watson HC, Peng JL, et al. Major grass pollen allergen Lol p 1 binds to diesel exhaust particles: implications for asthma and air pollution. Clin Exp Allergy. 1997;27(3):246-51.
- [668] Takenaka H, Zhang K, Diaz-Sanchez D, Tsien A, Saxon A. Enhanced human IgE production results from exposure to the aromatic hydrocarbons from diesel exhaust: direct effects on B-cell IgE production. J Allergy Clin Immunol. 1995;95(1 Pt 1):103-15.
- [669] Braun-Fahrlander C, Ackermann-Liebrich U, Schwartz J, Gnehm HP, Rutishauser M, Wanner HU. Air pollution and respiratory symptoms in preschool children. Am Rev Respir Dis. 1992;145(1):42-7.
- [670] Wardlaw AJ. Air pollution and allergic disease. Report of a Working Party of the British Society for Allergy and Clinical Immunology. Clin Exp Allergy, 1995;3:6-8.
- [671] Linn WS, Shamoo DA, Anderson KR, Peng RC, Avol EL, Hackney JD, et al. Short-term air pollution exposures and responses in Los Angeles area schoolchildren. J Expo Anal Environ Epidemiol. 1996;6(4):449-72.
- [672] Devlin RB, McDonnell WF, Mann R, Becker S, House DE, Schreinemachers D, et al. Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. Am J Respir Cell Mol Biol. 1991;4(1):72-81.
- [673] Graham DE, Koren HS. Biomarkers of inflammation in ozone-exposed humans. Comparison of the nasal and bronchoalveolar lavage. Am Rev Respir Dis. 1990;142(1):152-6.
- [674] McBride DE, Koenig JQ, Luchtel DL, Williams PV, Henderson W, Jr. Inflammatory effects of ozone in the upper airways of subjects with asthma. Am J Respir Crit Care Med. 1994;149(5):1192-7.
- [675] Frischer TM, Kuehr J, Pullwitt A, Meinert R, Forster J, Studnicka M, et al. Ambient ozone causes upper airways inflammation in children. Am Rev Respir Dis. 1993;148(4 Pt 1):961-4.
- [676] Peden DB, Setzer R, Jr., Devlin RB. Ozone exposure has both a priming effect on allergen-induced responses and an intrinsic inflammatory action in the nasal airways of

perennially allergic asthmatics. Am J Respir Crit Care Med. 1995;151(5):1336-45.

- [677] Kopp MV, Ulmer C, Ihorst G, Seydewitz HH, Frischer T, Forster J, et al. Upper airway inflammation in children exposed to ambient ozone and potential signs of adaptation [In Process Citation]. Eur Respir J. 1999;14(4):854-61.
- [678] Zwick H, Popp W, Wagner C, Reiser K, Schmoger J, Bock A, et al. Effects of ozone on the respiratory health, allergic sensitization, and cellular immune system in children [published erratum appears in Am Rev Respir Dis 1992 Apr;145(4 Pt 1):980]. Am Rev Respir Dis. 1991;144(5):1075-9.
- [679] McManus MS, Altman LC, Koenig JQ, Luchtel DL, Covert DS, Virant FS, et al. Human nasal epithelium: characterization and effects of in vitro exposure to sulfur dioxide. Exp Lung Res. 1989;15(6):849-65.
- [680] Koenig JQ. Indoor and outdoor pollutants and the upper respiratory tract. J Allergy Clin Immunol. 1988;81(5 Pt 2):1055-9.
- [681] Imbus HR. Clinical evaluation of patients with complaints related to formaldehyde exposure. J Allergy Clin Immunol. 1985;76(6):831-40.
- [682] Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects [see comments]. Lancet. 1995;345(8943):176-8.
- [683] Pope Cd, Dockery DW, Spengler JD, Raizenne ME. Respiratory health and PM10 pollution. A daily time series analysis. Am Rev Respir Dis. 1991;144(3 Pt 1):668-74.
- [684] Pope Cd, Dockery DW. Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am Rev Respir Dis. 1992;145(5):1123-8.
- [685] Nikasinovic L, Just J, Sahraoui F, Seta N, Grimfeld A, Momas I. Nasal inflammation and personal exposure to fine particles PM2.5 in asthmatic children. J Allergy Clin Immunol. 2006 Jun;117(6):1382-8.
- [686] Hajat S, Haines A, Atkinson RW, Bremner SA, Anderson HR, Emberlin J. Association between air pollution and daily consultations with general practitioners for allergic rhinitis in London, United Kingdom. Am J Epidemiol. 2001 Apr 1;153(7):704-14.
- [687] Villeneuve PJ, Doiron MS, Stieb D, Dales R, Burnett RT, Dugandzic R. Is outdoor air pollution associated with physician visits for allergic rhinitis among the elderly in Toronto, Canada? Allergy. 2006 Jun;61(6):750-8.
- [688] Steerenberg PA, Bischoff EW, de Klerk A, Verlaan AP, Jongbloets LM, van Loveren H, et al. Acute effect of air pollution on respiratory complaints, exhaled NO and biomarkers in nasal lavages of allergic children during the pollen season. Int Arch Allergy Immunol. 2003 Jun;131(2):127-37.
- [689] Braat JP, Mulder PG, Duivenvoorden HJ, Gerth Van Wijk R, Rijntjes E, Fokkens WJ. Pollutional and meteorological factors are closely related to complaints of non-allergic, non-infectious perennial rhinitis patients: a time series model. Clin Exp Allergy. 2002 May;32(5):690-7.
- [690] Lebowitz MD. Epidemiological studies of the respiratory effects of air pollution. Eur Respir J. 1996;9(5):1029-54.
- [691] Calderon-Garciduenas L, Roy-Ocotla G. Nasal cytology in southwest metropolitan Mexico City inhabitants: a pilot intervention study. Environ Health Perspect. 1993;101(2):138-44.
- [692] Calderon-Garciduenas L, Rodriguez-Alcaraz A, Garcia R, Sanchez G, Barragan G, Camacho R, et al. Human nasal mucosal changes after exposure to urban pollution. Environ Health Perspect. 1994;102(12):1074-80.
- [693] Burr ML, Karani G, Davies B, Holmes BA, Williams KL. Effects on respiratory health of a reduction in air pollution from vehicle exhaust emissions. Occup Environ Med. 2004 Mar;61(3):212-8.
- [694] Weiland SK, Mundt KA, Ruckmann A, Keil U. Selfreported wheezing and allergic rhinitis in children and traffic density on street of residence. Ann Epidemiol. 1994;4(3):243-7.

- [695] Burr ML. Indoor fungal exposure does it matter, and what can be done about it? [In Process Citation]. Clin Exp Allergy. 1999;29(11):1442-4.
- [696] Burr ML. Indoor air pollution and the respiratory health of children. Pediatr Pulmonol Suppl. 1999;18:3-5.
- [697] Burr ML, Anderson HR, Austin JB, Harkins LS, Kaur B, Strachan DP, et al. Respiratory symptoms and home environment in children: a national survey. Thorax. 1999;54(1):27-32.
- [698] Viegi G, Simoni M, Scognamiglio A, Baldacci S, Pistelli F, Carrozzi L, et al. Indoor air pollution and airway disease. Int J Tuberc Lung Dis. 2004 Dec;8(12):1401-15.
- [699] Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJ. Selected major risk factors and global and regional burden of disease. Lancet. 2002 Nov 2;360(9343):1347-60.
- [700] Volkmer RE, Ruffin RE, Wigg NR, Davies N. The prevalence of respiratory symptoms in South Australian preschool children. II. Factors associated with indoor air quality. J Paediatr Child Health. 1995;31(2):116-20.
- [701] Ostro BD, Lipsett MJ, Mann JK, Wiener MB, Selner J. Indoor air pollution and asthma. Results from a panel study [see comments]. Am J Respir Crit Care Med. 1994;149(6):1400-6.
- [702] Orozco-Levi M, Garcia-Aymerich J, Villar J, Ramirez-Sarmiento A, Anto JM, Gea J. Wood smoke exposure and risk of chronic obstructive pulmonary disease. Eur Respir J. 2006 Mar;27(3):542-6.
- [703] von-Mutius E, Illi S, Nicolai T, Martinez FD. Relation of indoor heating with asthma, allergic sensitisation, and bronchial responsiveness: survey of children in south Bavaria. Bmj. 1996;312(7044):1448-50.
- [704] Kilpelainen M, Koskenvuo M, Helenius H, Terho E. Wood stove heating, asthma and allergies. Respir Med. 2001 Nov;95(11):911-6.
- [705] Jarvis D. Gas cooking and respiratory disease [In Process Citation]. Thorax. 1999;54(12):1054.
- [706] Kerkhof M, de Monchy JG, Rijken B, Schouten JP. The effect of gas cooking on bronchial hyperresponsiveness and the role of immunoglobulin E [In Process Citation] Eur Respir J. 1999;14(4):839-44.
- [707] Bornehag CG, Sundell J, Weschler CJ, Sigsgaard T, Lundgren B, Hasselgren M, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect. 2004 Oct;112(14):1393-7.
- [708] Ezzati M, Kammen D. Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: an exposure-response study. Lancet. 2001;358(9282):619-24.
- [709] Sumer H, Turaclar UT, Onarlioghu T, Ozdemir L, Zwahlen M. The association of biomass fuel combustion on pulmonary function tests in the adult population of Mid-Anatolia. Soz Praventivmed. 2004;49(4):247-53.
- [710] Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ. 2000;78(9):1078-92.
- [711] Venn AJ, Yemaneberhan H, Bekele Z, Lewis SA, Parry E, Britton J. Increased risk of allergy associated with the use of kerosene fuel in the home. Am J Respir Crit Care Med. 2001 Nov 1;164(9):1660-4.
- [712] Lehrer SB, Wilson MR, Karr RM, Salvaggio JE. IgE antibody response of smokers, nonsmokers, and "smokesensitive" persons to tobacco leaf and smoke antigens. Am Rev Respir Dis. 1980 Jan;121(1):168-70.
- [713] Barbee RA, Halonen M, Kaltenborn W, Lebowitz M, Burrows B. A longitudinal study of serum IgE in a community cohort: correlations with age, sex, smoking, and atopic status. J Allergy Clin Immunol. 1987 Jun;79(6):919-27.
- [714] Jarvis D, Luczynska C, Chinn S, Burney P. The association of age, gender and smoking with total IgE and specific IgE. Clin Exp Allergy. 1995;25(11):1083-91.

- [715] Wuthrich B, Schindler C, Medici TC, Zellweger JP, Leuenberger P. IgE levels, atopy markers and hay fever in relation to age, sex and smoking status in a normal adult Swiss population. SAPALDIA (Swiss Study on Air Pollution and Lung Diseases in Adults) Team. Int Arch Allergy Immunol. 1996;111(4):396-402.
- [716] Oryszczyn MP, Annesi-Maesano I, Charpin D, Paty E, Maccario J, Kauffmann F. Relationships of active and passive smoking to total IgE in adults of the Epidemiological Study of the Genetics and Environment of Asthma, Bronchial Hyperresponsiveness, and Atopy (EGEA). Am J Respir Crit Care Med. 2000 Apr;161(4 Pt 1):1241-6.
- [717] Zetterstrom O, Osterman K, Machado L, Johansson SG. Another smoking hazard: raised serum IgE concentration and increased risk of occupational allergy. Br Med J (Clin Res Ed). 1981 Nov 7;283(6301):1215-7.
- [718] Venables KM, Topping MD, Howe W, Luczynska CM, Hawkins R, Taylor AJ. Interaction of smoking and atopy in producing specific IgE antibody against a hapten protein conjugate. Br Med J Clin Res. 1985;290(6463):201-4.
- [719] Calverley AE, Rees D, Dowdeswell RJ, Linnett PJ, Kielkowski D. Platinum salt sensitivity in refinery workers: incidence and effects of smoking and exposure. Occup Environ Med. 1995;52(10):661-6.
- [720] Jarvis D, Chinn S, Luczynska C, Burney P. The association of smoking with sensitization to common environmental allergens: results from the European Community Respiratory Health Survey. J Allergy Clin Immunol. 1999;104(5):934-40.
- [721] Wright AL, Holberg CJ, Martinez FD, Halonen M, Morgan W, Taussig LM. Epidemiology of physiciandiagnosed allergic rhinitis in childhood. Pediatrics. 1994;94(6 Pt 1):895-901.
- [722] Martinez FD, Antognoni G, Macri F, Bonci E, Midulla F, De-Castro G, et al. Parental smoking enhances bronchial responsiveness in nine-year-old children. Am Rev Respir Dis. 1988;138(3):518-23.
- [723] Upton MN, McConnachie A, McSharry C, Hart CL, Smith GD, Gillis CR, et al. Intergenerational 20 year trends in the prevalence of asthma and hay fever in adults: the Midspan family study surveys of parents and offspring. Bmj. 2000 Jul 8;321(7253):88-92.
- [724] Kalyoncu AF, Demir AU, Ozcakar B, Bozkurt B, Artvinli M. Asthma and allergy in Turkish university students: Two cross-sectional surveys 5 years apart. Allergol Immunopathol (Madr). 2001;29(6):264-71.
- [725] Brattmo M, Lindberg S, Wihl JA, Petersson G, Malm L. Allergic rhinitis and atopy in 18-year-old students. Am J Rhinol. 2002 Nov-Dec;16(6):323-7.
- [726] Hellgren J, Lillienberg L, Jarlstedt J, Karlsson G, Toren K. Population-based study of non-infectious rhinitis in relation to occupational exposure, age, sex, and smoking. Am J Ind Med. 2002 Jul;42(1):23-8.
- [727] Olsson P, Berglind N, Bellander T, Stjarne P. Prevalence of self-reported allergic and non-allergic rhinitis symptoms in Stockholm: relation to age, gender, olfactory sense and smoking. Acta Otolaryngol. 2003 Jan;123(1):75-80.
- [728] Numminen J, Ahtinen M, Huhtala H, Rautiainen M. Comparison of rhinometric measurements methods in intranasal pathology. Rhinology. 2003 Jun;41(2):65-8.
- [729] Annesi-Maesano I, Oryszczyn MP, Raherison C, Kopferschmitt C, Pauli G, Taytard A, et al. Increased prevalence of asthma and allied diseases among active adolescent tobacco smokers after controlling for passive smoking exposure. A cause for concern? Clin Exp Allergy. 2004 Jul;34(7):1017-23.
- [730] Topp R, Thefeld W, Wichmann HE, Heinrich J. The effect of environmental tobacco smoke exposure on allergic sensitization and allergic rhinitis in adults. Indoor Air. 2005 Aug;15(4):222-7.
- [731] Annesi-Maesano I, Oryszczyn MP, Neukirch F, Kauffmann F. Relationship of upper airway disease to tobacco smoking and allergic markers: a cohort study of

men followed up for 5 years. Int Arch Allergy Immunol. 1997;114(2):193-201.

- [732] Bascom R, Kulle T, Kagey-Sobotka A, Proud D. Upper respiratory tract environmental tobacco smoke sensitivity. Am Rev Respir Dis. 1991;143(6):1304-11.
- [733] Gleich GJ, Welsh PW, Yunginger JW, Hyatt RE, Catlett JB. Allergy to tobacco: an occupational hazard. N Engl J Med. 1980;302(11):617-9.
- [734] Ortega N, Quiralte J, Blanco C, Castillo R, Alvarez MJ, Carrillo T. Tobacco allergy: demonstration of crossreactivity with other members of Solanaceae family and mugwort pollen. Ann Allergy Asthma Immunol. 1999;82(2):194-7.
- [735] Willes SR, Fitzgerald TK, Bascom R. Nasal inhalation challenge studies with sidestream tobacco smoke. Arch Environ Health. 1992;47(3):223-30.
- [736] Monteil MA, Joseph G, Chang Kit C, Wheeler G, Antoine RM. Smoking at home is strongly associated with symptoms of asthma and rhinitis in children of primary school age in Trinidad and Tobago. Rev Panam Salud Publica. 2004 Sep;16(3):193-8.
- [737] Lund VJ, Preziosi P, Hercberg S, Hamoir M, Dubreuil C, Pessey JJ, et al. Yearly incidence of rhinitis, nasal bleeding, and other nasal symptoms in mature women. Rhinology. 2006 Mar;44(1):26-31.
- [738] Beggs PJ, Bambrick HJ. Is the global rise of asthma an early impact of anthropogenic climate change? Environ Health Perspect. 2005 Aug;113(8):915-9.
- [739] Hollins PD, Kettlewell PS, Atkinson MD, Stephenson DB, Corden JM, Millington WM, et al. Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain. Int J Biometeorol. 2004 Feb;48(3):137-41.
- [740] Fitter AH, Fitter RS. Rapid changes in flowering time in British plants. Science. 2002 May 31;296(5573):1689-91.
- [741] Garcia-Mozo H, Galan C, Jato V, Belmonte J, de la Guardia C, Fernandez D, et al. Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 2006;13(2):209-24.
- [742] Emberlin J, Mullins J, Corden J, Jones S, Millington W, Brooke M, et al. Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clin Exp Allergy. 1999 Mar;29(3):347-56.
- [743] Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allergy Asthma Immunol. 2002 Mar;88(3):279-82.
- [744] Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD, Straka JG. Cities as harbingers of climate change: common ragweed, urbanization, and public health. J Allergy Clin Immunol. 2003 Feb;111(2):290-5.
- [745] Ahlholm JU, Helander ML, Savolainen J. Genetic and environmental factors affecting the allergenicity of birch (Betula pubescens ssp. czerepanovii [Orl.] Hamet-ahti) pollen. Clin Exp Allergy 1998 Nov;28(11):1384-8.
- [746] Molfino NA, Slutsky AS, Zamel N. The effects of air pollution on allergic bronchial responsiveness. Clin Exp Allergy. 1992;22(7):667-72.
- [747] Behrendt H, Becker WM, Fritzsche C, Sliwa-Tomczok W, Tomczok J, Friedrichs KH, et al. Air pollution and allergy: experimental studies on modulation of allergen release from pollen by air pollutants. Int Arch Allergy Immunol, 1997;113(1-3):69-74.
- [748] D'Amato G Environmental urban factors (air pollution and allergens) and the rising trends in allergic respiratory diseases. Allergy. 2002;57 Suppl 72:30-3.
- [749] Williams R. Climate change blamed for rise in hay fever. Nature. 2005 Apr 28;434(7037):1059.
- [750] Blanc PD, Yen IH, Chen H, Katz PP, Earnest G, Balmes JR, et al. Area-level socio-economic status and health status among adults with asthma and rhinitis. Eur Respir J. 2006 Jan;27(1):85-94.

- [751] Williams HC, Strachan DP, Hay RJ. Childhood eczema: disease of the advantaged? Bmj. 1994;308(6937):1132-5.
- [752] Braback L, Hjern A, Rasmussen F. Social class in asthma and allergic rhinitis: a national cohort study over three decades. Eur Respir J. 2005 Dec;26(6):1064-8.
- [753] Shaheen SO, Aaby P, Hall AJ, Barker DJ, Heyes CB, Shiell AW, et al. Measles and atopy in Guinea-Bissau. Lancet. 1996;347(9018):1792-6.
- [754] Jones NS, Smith PA, Carney AS, Davis A. The prevalence of allergic rhinitis and nasal symptoms in Nottingham. Clin Otolaryngol. 1998;23(6):547-54.
- [755] Pawankar R, mullol J. ARIA update in collaboration with GA2LEN- Mechanisms of allergic rhinitis. Allergy. 2007:in press.
- [756] Poole JA, Rosenwasser LJ. The role of immunoglobulin E and immune inflammation: implications in allergic rhinitis. Curr Allergy Asthma Rep. 2005 May;5(3):252-8.
- [757] Punnonen J, Aversa G, Vanderkerckhove B, Roncarolo M-G, de Vries JE. Induction of isotype switching and Ig production by CD5+ and CD10+ human fetal B cells. J Immunol. 1992;148:3398-404.
- [758] Romagnani S. Immunologic influences on allergy and the TH1/TH2 balance. J Allergy Clin Immunol. 2004 Mar;113(3):395-400.
- [759] Romagnani S. Regulatory T cells: which role in the pathogenesis and treatment of allergic disorders? Allergy 2006 Jan;61(1):3-14.
  [760] Akdiş CA, Barlan IB, Bahceciler N, Akdis M.
- [760] Akdis CA, Barlan IB, Bahceciler N, Akdis M. Immunological mechanisms of sublingual immunotherapy. Allergy. 2006;61 Suppl 81:11-4.
- [761] Cameron L, Hamid Q, Wright E, Nakamura Y, Christodoulopoulos P, Muro S, et al. Local synthesis of epsilon germline gene transcripts, IL-4, and IL-13 in allergic nasal mucosa after ex vivo allergen exposure. J Allergy Clin Immunol. 2000 Jul;106(1 Pt 1):46-52.
- [762] Smurthwaite L, Durham SR. Local IgE Synthesis in Allergic Rhinitis and Asthma. Curr Allergy Asthma Rep. 2002 Mar;2(3):231-8.
- [763] Smurthwaite L, Walker SN, Wilson DR, Birch DS, Merrett TG, Durham SR, et al. Persistent IgE synthesis in the nasal mucosa of hay fever patients. Eur J Immunol. 2001 Dec;31(12):3422-31.
- [764] Takhar P, Smurthwaite L, Coker HA, Fear DJ, Banfield GK, Carr VA, et al. Allergen drives class switching to IgE in the nasal mucosa in allergic rhinitis. J Immunol. 2005 Apr 15;174(8):5024-32.
- [765] Prussin C, Metcalfe DD. 5. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2006 Feb;117(2 Suppl Mini-Primer):S450-6.
- [766] Menz G, Ying S, Durham SR, Corrigan CJ, Robinson DS, Hamid Q, et al. Molecular concepts of IgE-initiated inflammation in atopic and nonatopic asthma. Allergy. 1998;53(45 Suppl):15-21.
- [767] Kay AB. Allergy and allergic diseases. Second of two parts. N Engl J Med. 2001 Jan 11;344(2):109-13.
- [768] Casale TB, Condemi J, LaForce C, Nayak A, Rowe M, Watrous M, et al. Effect of omalizumab on symptoms of seasonal allergic rhinitis: a randomized controlled trial. Jama. 2001 Dec 19;286(23):2956-67.
- [769] Strunk RC, Bloomberg GR. Omalizumab for asthma. N Engl J Med. 2006 Jun 22;354(25):2689-95.
- [770] Vignola AM, Humbert M, Bousquet J, Boulet LP, Hedgecock S, Blogg M, et al. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: SOLAR. Allergy. 2004 Jul;59(7):709-17.
- [771] Humbert M, Beasley R, Ayres J, Slavin R, Hebert J, Bousquet J, et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy. 2005 Mar;60(3):309-16.
- [772] Roche N, Chinet TC, Huchon GJ. Allergic and nonallergic interactions between house dust mite

allergens and airway mucosa. Eur Respir J. 1997;10(3):719-26.

- [773] Thompson PJ. Unique role of allergens and the epithelium in asthma. Clin Exp Allergy. 1998;5:110-6; discussion 7-8.
- [774] King C, Brennan S, Thompson PJ, Stewart GA. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J Immunol. 1998;161(7):3645-51.
- [775] Reed CE, Kita H. The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol. 2004 Nov;114(5):997-1008; quiz 9.
- [776] Winton HL, Wan H, Cannell MB, Thompson PJ, Garrod DR, Stewart GA, et al. Class specific inhibition of house dust mite proteinases which cleave cell adhesion, induce cell death and which increase the permeability of lung epithelium. Br J Pharmacol. 1998;124(6):1048-59.
- [777] Pipkorn U. Hay fever: in the laboratory and at natural allergen exposure. Allergy. 1988;8:41-4.
- [778] Naclerio RM, Meier HL, Kagey-Sobotka A, Adkinson N, Jr., Meyers DA, Norman PS, et al. Mediator release after nasal airway challenge with allergen. Am Rev Respir Dis. 1983;128(4):597-602.
- [779] Lebel B, Bousquet J, Morel A, Chanal I, Godard P, Michel FB. Correlation between symptoms and the threshold for release of mediators in nasal secretions during nasal challenge with grass-pollen grains. J Allergy Clin Immunol. 1988;82(5 Pt 1):869-77.
- [780] Juliusson S, Pipkorn U, Karlsson G, Enerback L. Mast cells and eosinophils in the allergic mucosal response to allergen challenge: changes in distribution and signs of activation in relation to symptoms. J Allergy Clin Immunol. 1992;90(6 Pt 1):898-909.
- [781] Hakansson L, Rak S, Dahl R, Venge P. The formation of eosinophil and neutrophil chemotactic activity during a pollen season and after allergen challenge. J Allergy Clin Immunol. 1989;83(5):933-9.
- [782] Andersson M, Svensson C, Andersson P, Pipkorn U. Objective monitoring of the allergic inflammatory response of the nasal mucosa in patients with hay fever during natural allergen exposure. Am Rev Respir Dis. 1989;139(4):911-4.
- [783] Gerth-van-Wijk R. Nasal hyperreactivity: its pathogenesis and clinical significance. Clin Exp Allergy. 1991;21(6):661-7.
- [784] Corrado OJ, Gould CA, Kassab JY, Davies RJ. Nasal response of rhinitic and non-rhinitic subjects to histamine and methacholine: a comparative study. Thorax. 1986;41(11):863-8.
- [785] Bentley AM, Jacobson MR, Cumberworth V, Barkans JR, Moqbel R, Schwartz LB, et al. Immunohistology of the nasal mucosa in seasonal allergic rhinitis: increases in activated eosinophils and epithelial mast cells. J Allergy Clin Immunol. 1992;89(4):877-83.
- [786] Igarashi Y, Skoner DP, Doyle WJ, White MV, Fireman P, Kaliner MA. Analysis of nasal secretions during experimental rhinovirus upper respiratory infections. J Allergy Clin Immunol. 1993;92(5):722-31.
- [787] Enerback L, Pipkorn U, Olofsson A. Intraepithelial migration of mucosal mast cells in hay fever: ultrastructural observations. Int Arch Allergy Appl Immunol. 1986;81(4):289-97.
- [788] Otsuka H, Denburg J, Dolovich J, Hitch D, Lapp P, Rajan RS, et al. Heterogeneity of metachromatic cells in human nose: significance of mucosal mast cells. J Allergy Clin Immunol. 1985;76(5):695-702.
- [789] Francis JN, Lloyd CM, Sabroe I, Durham SR, Till SJ. T lymphocytes expressing CCR3 are increased in allergic rhinitis compared with non-allergic controls and following allergen immunotherapy. Allergy. 2007 Jan;62(1):59-65.
- [790] Fokkens WJ, Broekhuis-Fluitsma DM, Rijntjes E, Vroom TM, Hoefsmit EC. Langerhans cells in nasal mucosa of patients with grass pollen allergy. Immunobiology. 1991;182(2):135-42.

- [791] Malmberg H, Middleton E, Holopainen E, Withl J. Eosinophilia. In: Mygind N, Weeke B, eds. Allergic and vasomotor rhinitis: Clinical Aspects. Copenhagen: Munksgaard 1986:91.
- [792] Malmberg H. Symptoms of chronic and allergic rhinitis and occurrence of nasal secretion granulocytes in university students, school children and infants. Allergy. 1979;34(6):389-94.
- [793] Spector SL, English G, Jones L. Clinical and nasal biopsy response to treatment of perennial rhinitis. J Allergy Clin Immunol. 1980;66(2):129-37.
- [794] Slater A, Smallman LA, Drake-Lee AB. Increase in epithelial mast cell numbers in the nasal mucosa of patients with perennial allergic rhinitis. J Laryngol Otol. 1996;110(10):929-33.
- [795] Pawankar R. Mast cells in allergic airway disease and chronic rhinosinusitis. Chem Immunol Allergy. 2005;87:111-29.
- [796] Sergejeva S, Malmhall C, Lotvall J, Pullerits T. Increased number of CD344 cells in nasal mucosa of allergic rhinitis patients: inhibition by a local corticosteroid. Clin Exp Allergy. 2005 Jan;35(1):34-8.
- [797] Eliashar R, Levi-Schaffer F. The role of the eosinophil in nasal diseases. Curr Opin Otolaryngol Head Neck Surg. 2005 Jun 13(3):171-5.
- [798] De Lucca GV. Recent developments in CCR3 antagonists. Curr Opin Drug Discov Devel. 2006 Jul;9(4):516-24.
- [799] Wilson SJ, Lau L, Howarth PH. Inflammatory mediators in naturally occurring rhinitis. Clin Exp Allergy. 1998;28(2):220-7.
- [800] Volovitz B, Welliver RC, De-Castro G, Krystofik DA, Ogra PL. The release of leukotrienes in the respiratory tract during infection with respiratory syncytial virus: role in obstructive airway disease. Pediatr Res. 1988;24(4):504-7.
- [801] Skoner DP, Lee L, Doyle WJ, Boehm S, Fireman P. Nasal physiology and inflammatory mediators during natural pollen exposure. Ann Allergy. 1990;65(3):206-10.
- [802] Rasp G, Thomas PA, Bujia J. Eosinophil inflammation of the nasal mucosa in allergic and non-allergic rhinitis measured by eosinophil cationic protein levels in native nasal fluid and serum. Clin Exp Allergy. 1994;24(12):1151-6.
- [803] Peters-Golden M, Gleason MM, Togias A. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy. 2006 Jun;36(6):689-703.
- [804] Sarin S, Undem B, Sanico A, Togias A. The role of the nervous system in rhinitis. J Allergy Clin Immunol. 2006 Nov;118(5):999-1016.
- [805] Canning BJ. Neurology of allergic inflammation and rhinitis. Curr Allergy Asthma Rep. 2002 May;2(3):210-5.
- [806] Sanico AM, Stanisz AM, Gleeson TD, Bora S, Proud D, Bienenstock J, et al. Nerve growth factor expression and release in allergic inflammatory disease of the upper airways. Am J Respir Crit Care Med. 2000 May;161(5):1631-5.
- [807] Nassenstein C, Braun A, Nockher WA, Renz H. Neurotrophin effects on eosinophils in allergic inflammation. Curr Allergy Asthma Rep. 2005 May;5(3):204-11.
- [808] Salib R, Howarth P. Remodelling of the upper airways in allergic rhinitis: is it a feature of the disease? Clin Exp Allergy. 2003 Dec;33(12):1629-33.
- [809] Watelet JB, Van Zele T, Gjomarkaj M, Canonica GW, Dahlen SE, Fokkens W, et al. Tissue remodelling in upper airways: where is the link with lower airway remodelling? Allergy. 2006 Nov;61(11):1249-58.
- [810] Karlsson G, Pipkorn U. Natural allergen exposure does not influence the density of goblet cells in the nasal mucosa of patients with seasonal allergic rhinitis. Orl J Otorhinolaryngol Relat Spec. 1989;51(3):171-4.
- [811] Gluck U, Gebbers J. Epithelial changes in seasonal allergic rhinitis throughout the year: evidence of coexistent air pollution and local secretory IgA

deficiency? ORL J Otorhinolaryngol Relat Spec. 2000 Mar-Apr;62(2):68-75.

- [812] Amin K, Rinne J, Haahtela T, Simola M, Peterson CG, Roomans GM, et al. Inflammatory cell and epithelial characteristics of perennial allergic and nonallergic rhinitis with a symptom history of 1 to 3 years' duration. J Allergy Clin Immunol. 2001 Feb;107(2):249-57.
- [813] Minshall E, Ghaffar O, Cameron L, O'Brien F, Quinn H, Rowe-Jones J, et al. Assessment by nasal biopsy of longterm use of mometasone furoate aqueous nasal spray (Nasonex) in the treatment of perennial rhinitis. Otolaryngol Head Neck Surg. 1998;118(5):648-54.
- [814] Laliberte F, Laliberte MF, Lecart S, Bousquet J, Klossec JM, Mounedji N. Clinical and pathologic methods to assess the long-term safety of nasal corticosteroids. French Triamcinolone Acetonide Study Group. Allergy. 2000;55(8):718-22.
- [815] Chanez P, Vignola AM, Vic P, Guddo F, Bonsignore G, Godard P, et al. Comparison between nasal and bronchial inflammation in asthmatic and control subjects. Am J Respir Crit Care Med. 1999;159(2):588-95.
- [816] Bavbek S, Sencer H, Misirligil Z, Beder S, Gurbuz L. Light and electron microscope study in allergic rhinitis patients (ARP) with or without bronchial hyperreactivity (BHR). J Investig Allergol Clin Immunol. 1996;6(3):172-82.
- [817] Sanai A, Nagata H, Konno A. Extensive interstitial collagen deposition on the basement membrane zone in allergic nasal mucosa. Acta Otolaryngol. 1999;119(4):473-8.
- [818] Benson M, Carlsson B, Carlsson LM, Mostad P, Svensson PA, Cardell LO. DNA microarray analysis of transforming growth factor-beta and related transcripts in nasal biopsies from patients with allergic rhinitis. Cytokine. 2002 Apr 7;18(1):20-5.
- [819] Wu X, Myers AC, Goldstone AC, Togias A, Sanico AM. Localization of nerve growth factor and its receptors in the human nasal mucosa. J Allergy Clin Immunol. 2006 Aug;118(2):428-33.
- [820] Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol. 2003;28(1):12-24.
- [821] van Toorenenbergen AW, Gerth van Wijk R, Vermeulen AM. Allergen-induced matrix metalloproteinase-9 in nasal lavage fluid. Allergy. 1999;54(3):293-4.
- [822] Shaida A, Kenyon G, Devalia J, Davies RJ, MacDonald TT, Pender SL. Matrix metalloproteinases and their inhibitors in the nasal mucosa of patients with perennial allergic rhinitis. J Allergy Clin Immunol. 2001 Nov;108(5):791-6.
- [823] Abrams DC, Toynton SC, Dore C, Emson MA, Taylor P, Springall DR, et al. Stereological estimation of blood vessel surface and volume densities in human normal and rhinitic nasal mucosa. Rhinology, 1997;35(1):22-7.
- rhinitic nasal mucosa. Rhinology. 1997;35(1):22-7.
  [824] Mori S, Fujieda S, Kimura Y, Takahashi N, Saito H. Nasal challenge activates the mucociliary transport system on not only the ipsilateral but also the contralateral side of the nose in patients with perennial allergic rhinitis. ORL J Otorhinolaryngol Relat Spec. 2000 Nov-Dec;62(6):303-6.
- [825] Psarras S, Volonaki E, Skevaki CL, Xatzipsalti M, Bossios A, Pratsinis H, et al. Vascular endothelial growth factor-mediated induction of angiogenesis by human rhinoviruses J Allergy Clin Immunol. 2006 Feb;117(2):291-7.
- [826] Holgate ST, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol. 2000;105(2 Pt 1):193-204.
- [827] Lazaar AL, Panettieri RA, Jr. Airway smooth muscle as a regulator of immune responses and bronchomotor tone. Clin Chest Med. 2006 Mar;27(1):53-69, vi.
- [828] Black JL, Roth M, Lee J, Carlin S, Johnson PR. Mechanisms of airway remodeling. Airway smooth muscle. Am J Respir Crit Care Med. 2001;164(10 Pt 2):S63-6.

- [829] Burgess JK, Johnson PR, Ge Q, Au WW, Poniris MH, McParland BE, et al. Expression of connective tissue growth factor in asthmatic airway smooth muscle cells. Am J Respir Crit Care Med. 2003;167(1):71-7.
- [830] Veraksa A, Del Campo M, McGinnis W. Developmental patterning genes and their conserved functions: from model organisms to humans. Mol Genet Metab. 2000;69(2):85-100.
- [831] Bousquet J, Yssel H, Vignola AM. Is allergic asthma associated with delayed fetal maturation or the persistence of conserved fetal genes? Allergy. 2000;55(12):1194-7.
- [832] Gerth van Wijk RG, de Graaf-in 't Veld C, Garrelds IM. Nasal hyperreactivity. Rhinology. 1999;37(2):50-5.
- [833] Assanasen P, Baroody FM, Naureckas E, Naclerio RM. Warming of feet elevates nasal mucosal surface temperature and reduces the early response to nasal challenge with allergen. J Allergy Clin Immunol. 1999;104(2 Pt 1):285-93.
- [834] Naito K, Miyata S, Baba R, Mamiya T, Senoh Y, Iwata S, et al. The alteration of nasal resistance before and after local exposure to heated aerosol in perennial allergic rhinitis. Rhinology. 1999;37(2):66-8.
- [835] Proud D, Bailey GS, Naclerio RM, Reynolds CJ, Cruz AA, Eggleston PA, et al. Tryptase and histamine as markers to evaluate mast cell activation during the responses to nasal challenge with allergen, cold, dry air, and hyperosmolar solutions. J Allergy Clin Immunol. 1992;89(6):1098-110.
- [836] Togias AG, Naclerio RM, Proud D, Fish JE, Adkinson N, Jr., Kagey-Sobotka A, et al. Nasal challenge with cold, dry air results in release of inflammatory mediators. Possible mast cell involvement. J Clin Invest. 1985;76(4):1375-81.
- [837] Iliopoulos O, Proud D, Norman PS, Lichtenstein LM, Kagey-Sobotka A, Naclerio RM. Nasal challenge with cold, dry air induces a late-phase reaction. Am Rev Respir Dis. 1988;138(2):400-5.
- [838] Gerth van Wijk R, Dieges PH. Nasal reactivity to histamine and methacholine: two different forms of upper airway responsiveness. Rhinology. 1994;32(3):119-22.
- [839] Asakura K, Enomoto K, Ara H, Azuma E, Kataura A. Nasal responsiveness to methacholine stimulation in allergic rhinitis patients. Arch Otorhinolaryngol. 1984;239(3):273-8.
- [840] Morris JB, Stanek J, Gianutsos G. Sensory nervemediated immediate nasal responses to inspired acrolein. J Appl Physiol. 1999;87(5):1877-86.
- [841] Philip G, Baroody FM, Proud D, Naclerio RM, Togias AG. The human nasal response to capsaicin. J Allergy Clin Immunol. 1994;94(6 Pt 1):1035-45.
- [842] Baldwin CM, Bell IR, O'Rourke MK. Odor sensitivity and respiratory complaint profiles in a community- based sample with asthma, hay fever, and chemical odor intolerance. Toxicol Ind Health. 1999;15(3-4):403-9.
- [843] Baudoin T, Anzic SA, Kalogjera L. Distilled water nasal provocation in hyperreactive patients. Am J Rhinol. 1999;13(3):229-33.
- [844] Hasegawa M. Nasal cycle and postural variations in nasal resistance. Ann Otol Rhinol Laryngol. 1982;91(1 Pt 1):112-4.
- [845] Saketkhoo K, Januszkiewicz A, Sackner MA. Effects of drinking hot water, cold water, and chicken soup on nasal mucus velocity and nasal airflow resistance. Chest. 1978;74(4):408-10.
- [846] Aberg N. Asthma and allergic rhinitis in Swedish conscripts. Clin Exp Allergy. 1989;19(1):59-63.
- [847] Lundback B. Epidemiology of rhinitis and asthma. Clin Exp Allergy. 1998;2:3-10.
- [848] Sakurai Y, Nakamura K, Teruya K, Shimada N, Umeda T, Tanaka H, et al. Prevalence and risk factors of allergic rhinitis and cedar pollinosis among Japanese men. Prev Med. 1998;27(4):617-22.

- [849] Sly RM. Changing prevalence of allergic rhinitis and asthma. Ann Allergy Asthma Immunol. 1999;82(3):233-48; quiz 48-52.
- [850] Holgate ST. The epidemic of allergy and asthma [In Process Citation]. Nature. 1999;402(6760 Suppl):B2-4.
- [851] Variations in the prevalence of respiratory symptoms, self-reported asthma attacks, and use of asthma medication in the European Community Respiratory Health Survey (ECRHS). Eur Respir J. 1996;9(4):687-95.
- [852] Strachan D, Sibbald B, Weiland S, Ait-Khaled N, Anabwani G, Anderson HR, et al. Worldwide variations in prevalence of symptoms of allergic rhinoconjunctivitis in children: the International Study of Asthma and Allergies in Childhood (ISAAC). Pediatr Allergy Immunol. 1997;8(4):161-76.
- [853] Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006 Aug 26;368(9537):733-43.
- [854] Wuthrich B, Schindler C, Leuenberger P, Ackermann-Liebrich U. Prevalence of atopy and pollinosis in the adult population of Switzerland (SAPALDIA study). Swiss Study on Air Pollution and Lung Diseases in Adults. Int Arch Allergy Immunol. 1995;106(2):149-56.
- [855] Braun-Fahrlander C, Gassner M, Grize L, Neu U, Sennhauser FH, Varonier HS, et al. Prevalence of hay fever and allergic sensitization in farmer's children and their peers living in the same rural community. SCARPOL team. Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Air Pollution. Clin Exp Allergy. 1999;29(1):28-34.
- [856] Burney P, Malmberg E, Chinn S, Jarvis D, Luczynska C, Lai E. The distribution of total and specific serum IgE in the European Community Respiratory Health Survey. J Allergy Clin Immunol. 1997;99(3):314-22.
- [857] Jarvis D, Luczynska C, Chinn S, Potts J, Sunyer J, Janson C, et al. Change in prevalence of IgE sensitization and mean total IgE with age and cohort. J Allergy Clin Immunol. 2005 Sep;116(3):675-82.
- [858] Sunyer J, Jarvis D, Pekkanen J, Chinn S, Janson C, Leynaert B, et al. Geographic variations in the effect of atopy on asthma in the European Community Respiratory Health Study. J Allergy Clin Immunol. 2004 Nov;114(5):1033-9.
- [859] Sears MR, Herbison GP, Holdaway MD, Hewitt CJ, Flannery EM, Silva PA. The relative risks of sensitivity to grass pollen, house dust mite and cat dander in the development of childhood asthma. Clin Exp Allergy. 1989;19(4):419-24.
- [860] Arshad SH, Kurukulaaratchy RJ, Fenn M, Waterhouse L, Matthews S. Rhinitis in 10-year-old children and early life risk factors for its development. Acta Paediatr. 2002;91(12):1334-8.
- [861] Jessen M, Malm L. Definition, prevalence and development of nasal obstruction. Allergy. 1997;52(40 Suppl):3-6.
- [862] Downs SH, Marks GB, Belosouva EG, Peat JK. Asthma and hayfever in Aboriginal and non-Aboriginal children living in non-remote rural towns. Med J Aust. 2001 Jul 2;175(1):10-3.
- [863] Levesque B, Rhainds M, Ernst P, Grenier AM, Kosatsky T, Audet N, et al. Asthma and allergic rhinitis in Quebec children. Can Respir J. 2004 Jul-Aug;11(5):343-8.
- [864] Mortz CG, Lauritsen JM, Bindslev-Jensen C, Andersen KE. Prevalence of atopic dermatitis, asthma, allergic rhinitis, and hand and contact dermatitis in adolescents. The Odense Adolescence Cohort Study on Atopic Diseases and Dermatitis. Br J Dermatol. 2001 Mar;144(3):523-32.
- [865] Varjonen E, Kalimo K, Lammintausta K, Terho P. Prevalence of atopic disorders among adolescents in Turku, Finland. Allergy. 1992;47(3):243-8.

- [866] Harf R, Contassot JC, Dechamp C, Despres B, Deviller P, Diter P, et al. [Biological and clinical prevalence of pollinosis caused by ragweeds of the upper valley of the Rhone corridor]. Allerg Immunol (Paris). 1992;24(3):95-7
- [867] Alanko K. Prevalence of asthma in a Finnish rural population. A study of symptomatic subjects tested for bronchial hyperreactivity. Scand J Respir Dis Suppl. 1970;76:1-64.
- [868] Haahtela TM. The prevalence of allergic conditions and immediate skin test reactions among Finnish adolescents. Clin Allergy. 1979;9(1):53-60.
- [869] Dold S, Wjst M, von Mutius E, Reitmeir P, Stiepel E. Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Arch Dis Child. 1992;67(8):1018-22.
- [870] Matricardi PM, Rosmini P, Ferrigno L, Nisini R, Rapicetta M, Chionne P, et al. Cross sectional retrospective study of prevalence of atopy among Italian military students with antibodies against hepatitis A virus [see comments]. Bmj. 1997;314(7086):999-1003.
- [see comments]. Bmj. 1997;314(7086):999-1003.
  [871] Astarita C, Harris RI, de Fusco R, Franzese A, Biscardi D, Mazzacca FR, et al. An epidemiological study of atopy in children. Clin Allergy. 1988;18(4):341-50.
- [872] Ogino S, Irifune M, Harada T, Matsunaga T, Ishida M. Nasal allergy in medical students. Rhinology. 1990;28(3):163-8.
- [873] Okuma M. [Prevalence rate of allergic diseases among school children in Okinawa]. Arerugi. 1994;43(3):492-500.
- [874] Okano M, Nishizaki K, Nakada M, Kawarai Y, Goto S, Satoskar AR, et al. Prevalence and prediction of allergic rhinitis using questionnaire and nasal smear examination in schoolchildren. Acta Otolaryngol Suppl. 1999;540:58-63.
- [875] Suguru M, Reiko N, Hiroshi N, Kazuko Y, Yasuhiro K. Prevalence of specific allergic diseases in school children as related to parental atopy. Ped Intern. 1999;41:46-9.
- [876] Min YG, Choi BY, Kwon SK, Lee SS, Jung YH, Kim JW, et al. Multicenter study on the prevalence of perennial allergic rhinitis and allergy-associated disorders. J Korean Med Sci. 2001 Dec;16(6):697-701.
- [877] Bakke P, Gulsvik A, Eide GE. Hay fever, eczema and urticaria in southwest Norway. Lifetime prevalences and association with sex, age, smoking habits, occupational airborne exposures and respiratory symptoms. Allergy. 1990;45(7):515-22.
- [878] Dotterud LK, Kvammen B, Bolle R, Falk ES. A survey of atopic diseases among school children in Sor-Varanger community. Possible effects of subarctic climate and industrial pollution from Russia. Acta Derm Venereol. 1994;74(2):124-8.
- [879] Breborowicz A, Burchardt B, Pieklik H. [Asthma, allergic rhinitis and atopic dermatitis in schoolchildren]. Pneumonol Alergol Pol. 1995;63(3-4):157-61.
- [880] Dotterud LK, Odland JO, Falk ES. Atopic diseases among schoolchildren in Nikel, Russia, an Arctic area with heavy air pollution. Acta Derm Venereol. 2001 Jun-Jul;81(3):198-201.
- [881] Hannaford PC, Simpson JA, Bisset AF, Davis A, McKerrow W, Mills R. The prevalence of ear, nose and throat problems in the community: results from a national cross-sectional postal survey in Scotland. Fam Pract. 2005 Jun;22(3):227-33.
- [882] Ng TP, Tan WC. Epidemiology of allergic rhinitis and its associated risk factors in Singapore. Int J Epidemiol. 1994;23(3):553-8.
- [883] Goh DY, Chew FT, Quek SC, Lee BW. Prevalence and severity of asthma, rhinitis, and eczema in Singapore schoolchildren. Arch Dis Child. 1996;74(2):131-5.
- [884] Azpiri A, Gamboa PM, Fernandez E, Fernandez de Corres L, Alonso E, Escobar A, et al. Prevalence of pollinosis in the Basque Country. Allergy. 1999;54(10):1100-4.
- [885] Hattevig G, Kjellman B, Bjorksten B. Appearance of IgE antibodies to ingested and inhaled allergens during the

first 12 years of life in atopic and non-atopic children. Pediatr Allergy Immunol. 1993;4(4):182-6.

- [886] Norrman E, Rosenhall L, Nystrom L, Jonsson E, Stjernberg N. Prevalence of positive skin prick tests, allergic asthma, and rhinoconjunctivitis in teenagers in northern Sweden. Allergy. 1994;49(10):808-15.
- [887] Aberg N, Engstrom I, Lindberg U. Allergic diseases in Swedish school children. Acta Paediatr Scand. 1989;78(2):246-52.
- [888] Varonier HS, de Haller J, Schopfer C. [Prevalence of allergies in children and adolescents]. Helv Paediatr Acta. 1984;39(2):129-36.
- [889] Bunnag C, Jareoncharsri P, Voraprayoon S, Kongpatanakul S. Epidemiology of rhinitis in Thais: characteristics and risk factors. Asian Pac J Allergy Immunol. 2000 Mar;18(1):1-7.
- [890] Kalyoncu AF, Selcuk ZT, Enunlu T, Demir AU, Coplu L, Sahin AA, et al. Prevalence of asthma and allergic diseases in primary school children in Ankara, Turkey: two cross-sectional studies, five years apart. Pediatr Allergy Immunol. 1999;10(4):261-5.
- [891] Ozdemir N, Ucgun I, Metintas S, Kolsuz M, Metintas M. The prevalence of asthma and allergy among university freshmen in Eskisehir, Turkey. Respir Med. 2000;94(6):536-41.
- [892] Unlu M, Orman A, Dogan N. The prevalence of asthma among secondary school students in Afyon, Turkey. Asian Pac J Allergy Immunol. 2002 Mar;20(1):1-6.
- [893] Tomac N, Demirel F, Acun C, Ayoglu F. Prevalence and risk factors for childhood asthma in Zonguldak, Turkey. Allergy Asthma Proc. 2005 Sep-Oct;26(5):397-402.
- [894] Dinmezel S, Ogus C, Erengin H, Cilli A, Ozbudak O, Ozdemir T. The prevalence of asthma, allergic rhinitis, and atopy in Antalya, Turkey. Allergy Asthma Proc. 2005 Sep-Oct;26(5):403-9.
- [895] Howarth PH. Allergic rhinitis: a rational choice of treatment. Respir Med. 1989;83(3):179-88.
- [896] Burr ML, Butland BK, King S, Vaughan-Williams E. Changes in asthma prevalence: two surveys 15 years apart [see comments]. Arch Dis Child 1989;64(10):1452-6.
- [897] Ninan TK, Russell G. Respiratory symptoms and atopy in Aberdeen schoolchildren: evidence from two surveys 25 years apart [see comments]. Bmj. 1992;304(6831):873-5.
- [898] Strachan DP. Epidemiology of hay fever: towards a community diagnosis. Clin Exp Allergy. 1995;25(4):296-303.
- [899] Jones NS, Carney AS, Davis A. The prevalence of allergic rhinosinusitis: a review. J Laryngol Otol. 1998;112(11):1019-30.
- [900] Hagy GW, Settipane GA. Bronchial asthma, allergic rhinitis, and allergy skin tests among college students. J Allergy. 1969;44(6):323-32.
- [901] Broder I, Higgins MW, Mathews KP, Keller JB. Epidemiology of asthma and allergic rhinitis in a total community, Tecumseh, Michigan. 3. Second survey of the community. J Allergy Clin Immunol. 1974;53(3):127-38.
- [902] Esamai F, Ayaya S, Nyandiko W. Prevalence of asthma, allergic rhinitis and dermatitis in primary school children in Uasin Gishu district, Kenya. East Afr Med J. 2002 Oct;79(10):514-8.
- [903] Hailu S, Tessema T, Silverman M. Prevalence of symptoms of asthma and allergies in schoolchildren in Gondar town and its vicinity, northwest Ethiopia. Pediatr Pulmonol. 2003 Jun;35(6):427-32.
- [904] Lee SL, Wong W, Lau YL. Increasing prevalence of allergic rhinitis but not asthma among children in Hong Kong from 1995 to 2001 (Phase 3 International Study of Asthma and Allergies in Childhood). Pediatr Allergy Immunol. 2004 Feb;15(1):72-8.
- [905] Teeratakulpisarn J, Pairojkul S, Heng S. Survey of the prevalence of asthma, allergic rhinitis and eczema in schoolchildren from Khon Kaen, Northeast Thailand. an ISAAC study. International Study of Asthma and

Allergies in Childhood. Asian Pac J Allergy Immunol. 2000 Dec;18(4):187-94.

- [906] Asher MI, Barry D, Clayton T, Crane J, D'Souza W, Ellwood P, et al. The burden of symptoms of asthma, allergic rhinoconjunctivities and atopic eczema in children and adolescents in six New Zealand centres: ISAAC Phase One. N Z Med J. 2001 Mar 23;114(1128):114-20.
- [907] Akcakaya N, Kulak K, Hassanzadeh A, Camcioglu Y, Cokugras H. Prevalence of bronchial asthma and allergic rhinitis in Istanbul school children. Eur J Epidemiol. 2000;16(8):693-9.
- [908] Vanna AT, Yamada E, Arruda LK, Naspitz CK, Sole D. International Study of Asthma and Allergies in Childhood: validation of the rhinitis symptom questionnaire and prevalence of rhinitis in schoolchildren in Sao Paulo, Brazil. Pediatr Allergy Immunol. 2001 Apr;12(2):95-101.
- [909] Shamssain MH, Shamsian N. Prevalence and severity of asthma, rhinitis, and atopic eczema in 13- to 14-year-old schoolchildren from the northeast of England. Ann Allergy Asthma Immunol. 2001 Apr;86(4):428-32.
- [910] Kaiser R, Schindler C, Kunzli N, Ackermann-Liebrich U, Heeb D, Medici TC, et al. Use of transition probabilities to estimate the effect of smoking on the duration of episodes of respiratory symptoms in diary data: the Swiss Study on Air Pollution and Lung Diseases in Adults (SAPALDIA). Am J Epidemiol. 1998;148(6):600-8.
- [911] Lenenberger P, Schwartz J, Ackermann-Liebrich U, Blaser K, Bolognini G, Bongard JP, et al. Passive smoking exposure in adults and chronic respiratory symptoms (SAPALDIA Study). Swiss Study on Air Pollution and Lung Diseases in Adults, SAPALDIA Team [see comments]. Am J Respir Crit Care Med. 1994;150(5 Pt 1):1221-8.
- [912] Monn C, Brandli O, Schindler C, Ackermann-Liebrich U, Leuenberger P. Personal exposure to nitrogen dioxide in Switzerland. SAPALDIA team. Swiss Study on Air Pollution and Lung Diseases in Adults. Sci Total Environ. 1998;215(3):243-51.
- [913] Braun-Fahrlander C, Vuille JC, Sennhauser FH, Neu U, Kunzle T, Grize L, et al. Respiratory health and longterm exposure to air pollutants in Swiss schoolchildren. SCARPOL Team. Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Air Pollution, Climate and Pollen. Am J Respir Crit Care Med. 1997;155(3):1042-9.
- [914] Asher MI, Keil U, Anderson HR, Beasley R, Crane J, Martinez F, et al. International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur Respir J. 1995;8(3):483-91.
- [915] Asher MI, Weiland SK. The International Study of Asthma and Allergies in Childhood (ISAAC). ISAAC Steering Committee. Clin Exp Allergy. 1998;5:52-66; discussion 90-1.
- [916] Stewart AW, Asher MI, Clayton TO, Crane J, D'Souza W, Ellwood PE, et al. The effect of season-of-response to ISAAC questions about asthma, rhinitis and eczema in children. Int J Epidemiol. 1997;26(1):126-36.
- [917] Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee [see comments]. Lancet. 1998;351(9111):1225-32.
- [918] Bjorksten B, Dumitrascu D, Foucard T, Khetsuriani N, Khaitov R, Leja M, et al. Prevalence of childhood asthma, rhinitis and eczema in Scandinavia and Eastern Europe. Eur Respir J. 1998;12(2):432-7.
- [919] Duhme H, Weiland SK, Rudolph P, Wienke A, Kramer A, Keil U. Asthma and allergies among children in West and East Germany: a comparison between Munster and Greifswald using the ISAAC phase I protocol. International Study of Asthma and Allergies in Childhood. Eur Respir J. 1998;11(4):840-7.
- [920] Esamai F, Anabwani GM. Prevalence of asthma, allergic rhinitis and dermatitis in primary school children in

Uasin Gishu district, Kenya. East Afr Med J. 1996;73(7):474-8.

- [921] Falade AG, Olawuyi F, Osinusi K, Onadeko BO. Prevalence and severity of symptoms of asthma, allergic rhino- conjunctivitis and atopic eczema in secondary school children in Ibadan, Nigeria. East Afr Med J. 1998;75(12):695-8.
- [922] Habbick BF, Pizzichini MM, Taylor B, Rennie D, Senthilselvan A, Sears MR. Prevalence of asthma, rhinitis and eczema among children in 2 Canadian cities: the International Study of Asthma and Allergies in Childhood. Cmaj. 1999;160(13):1824-8.
- [923] Keil U, Weiland SK, Duhme H, Chambless L. The International Study of Asthma and Allergies in Childhood (ISAAC): objectives and methods; results from German ISAAC centres concerning traffic density and wheezing and allergic rhinitis. Toxicol Lett. 1996;86(2-3):99-103.
- [924] Lau YL, Karlberg J. Prevalence and risk factors of childhood asthma, rhinitis and eczema in Hong Kong. J Paediatr Child Health. 1998;34(1):47-52.
- [925] Leung R, Wong G, Lau J, Ho A, Chan JK, Choy D, et al. Prevalence of asthma and allergy in Hong Kong schoolchildren: an ISAAC study. Eur Respir J. 1997;10(2):354-60.
- [926] Manning PJ, Curran K, Kirby B, Taylor MR, Clancy L. Asthma, hay fever and eczema in Irish teenagers (ISAAC protocol). Ir Med J. 1997;90(3):110-2.
- [927] Moyes CD, Waldon J, Ramadas D, Crane J, Pearce N. Respiratory symptoms and environmental factors in schoolchildren in the Bay of Plenty. N Z Med J. 1995;108(1007):358-61.
- [928] Montefort S, Lenicker HM, Caruna S, Agius Muscat H. Asthma, rhinitis and eczema in Maltese 13-15 year-old schoolchildren -- prevalence, severity and associated factors [ISAAC]. International Study of Asthma and Allergies in Childhood. Clin Exp Allergy. 1998;28(9):1089-99.
- [929] Pin I, Pilenko-McGuigan C, Cans C, Gousset M, Pison C. [Epidemiology of respiratory allergy in children], Arch Pediatr. 1999;6(1):6S-13S.
- [930] Quah BS, Razak AR, Hassan MH. Prevalence of asthma, rhinitis and eczema among schoolchildren in Kelantan, Malaysia. Acta Paediatr Jpn. 1997;39(3):329-35.
- [931] Remes ST, Korppi M, Kajosaari M, Koivikko A, Soininen L, Pekkanen J. Prevalence of allergic rhinitis and atopic dermatitis among children in four regions of Finland. Allergy. 1998;53(7):682-9.
- [932] Robertson CF, Dalton MF, Peat JK, Haby MM, Bauman A, Kennedy JD, et al. Asthma and other atopic diseases in Australian children. Australian arm of the International Study of Asthma and Allergy in Childhood. Med J Aust. 1998;168(9):434-8.
- [933] Vichyanond P, Jirapongsananuruk O, Visitsuntorn N, Tuchinda M. Prevalence of asthma, rhinitis and eczema in children from the Bangkok area using the ISAAC (International Study for Asthma and Allergy in Children) questionnaires. J Med Assoc Thai. 1998;81(3):175-84.
- [934] Suarez-Varela MM, Gonzalez AL, Martinez Selva MI. Socioeconomic risk factors in the prevalence of asthma and other atopic diseases in children 6 to 7 years old in Valencia Spain. Eur J Epidemiol. 1999;15(1):35-40.
- [935] Ronmark E, Lundback B, Jonsson E, Platts-Mills T. Asthma, type-1 allergy and related conditions in 7- and 8-year-old children in northern Sweden: prevalence rates and risk factor pattern. Respir Med. 1998;92(2):316-24.
- [936] Renzoni E, Forastiere F, Biggeri A, Viegi G, Bisanti L, Chellini E, et al. Differences in parental- and self-report of asthma, rhinitis and eczema among Italian adolescents. SIDRIA collaborative group. Studi Italiani sui Disordini Respiratori dell' Infanzia e l'Ambiente [In Process Citation]. Eur Respir J. 1999;14(3):597-604.
- [937] Janahi IA, Bener A, Bush A. Prevalence of asthma among Qatari schoolchildren: International Study of Asthma and Allergies in Childhood, Qatar. Pediatr Pulmonol. 2006 Jan;41(1):80-6.

- [938] Neukirch F, Pin I, Knani J, Henry C, Pison C, Liard R, et al. Prevalence of asthma and asthma-like symptoms in three French cities. Respir Med. 1995;89(10):685-92.
- [939] Leynaert B, Bousquet J, Henry C, Liard R, Neukirch F. Is bronchial hyperresponsiveness more frequent in women than in men? A population-based study. Am J Respir Crit Care Med. 1997;156(5):1413-20.
- [940] Leynaert B, Bousquet J, Neukirch C, Liard R, Neukirch F. Perennial rhinitis: An independent risk factor for asthma in nonatopic subjects: Results from the European Community Respiratory Health Survey. J Allergy Clin Immunol. 1999:301-4.
- [941] Papageorgiou N, Gaga M, Marossis C, Reppas C, Avarlis P, Kyriakou M, et al. Prevalence of asthma and asthmalike symptoms in Athens, Greece. Respir Med. 1997;91(2):83-8.
- [942] Butland BK, Strachan DP, Crawley-Boevey EE, Anderson HR. Childhood asthma in South London: trends in prevalence and use of medical services 1991-2002. Thorax. 2006 May;61(5):383-7.
- [943] Aberg N, Hesselmar B, Aberg B, Eriksson B. Increase of asthma, allergic rhinitis and eczema in Swedish schoolchildren between 1979 and 1991 [see comments]. Clin Exp Allergy. 1995;25(9):815-9.
  [944] Linneberg A, Nielsen NH, Madsen F, Frolund L, Dirksen
- [944] Linneberg A, Nielsen NH, Madsen F, Frolund L, Dirksen A, Jorgensen T. Increasing prevalence of allergic rhinitis symptoms in an adult Danish population. Allergy. 1999;54(11):1194-8.
- [945] Linneberg A, Nielsen NH, Madsen F, Frolund L, Dirksen A, Jorgensen T. Increasing prevalence of specific IgE to aeroallergens in an adult population: two cross-sectional surveys 8 years apart: the Copenhagen Allergy Study. J Allergy Clin Immunol. 2000 Aug;106(2):247-52.
- Linneberg A, Nielsen NH, Madsen F, Frolund L, Dirksen A, Jorgensen T. Secular trends of allergic asthma in Danish adults. The Copenhagen Allergy Study. Respir Med. 2001;95(4):258-64.
- [947] Demir E, Tanac R, Can D, Gulen F, Yenigun A, Aksakal K. Is there an increase in the prevalence of allergic diseases among schoolchildren from the Aegean region of Turkey? Allergy Asthma Proc. 2005 Sep-Oct;26(5):410-4.
- [948] Selnes A, Nystad W, Bolle R, Lund E. Diverging prevalence trends of atopic disorders in Norwegian children. Results from three cross-sectional studies. Allergy. 2005 Jul;60(7):894-9.
- [949] Riedi CA, Rosario NA, Ribas LF, Backes AS, Kleiniibing GF, Popija M, et al. Increase in prevalence of rhinoconjunctivitis but not asthma and atopic eczema in teenagers. J Investig Allergol Clin Immunol. 2005;15(3):183-8.
- [950] Quah BS, Wan-Pauzi I, Ariffin N, Mazidah AR. Prevalence of asthma, eczema and allergic rhinitis: two surveys, 6 years apart, in Kota Bharu, Malaysia. Respirology. 2005 Mar;10(2):244-9.
- [951] Downs SH, Marks GB, Sporik R, Belosouva EG, Car NG, Peat JK. Continued increase in the prevalence of asthma and atopy. Arch Dis Child. 2001 Jan;84(1):20-3.
- [952] von Hertzen L, Haahtela T. Signs of reversing trends in prevalence of asthma. Allergy. 2005 Mar;60(3):283-92.
- [953] Rimpela AH, Savonius B, Rimpela MK, Haahtela T. Asthma and allergic rhinitis among Finnish adolescents in 1977-1991. Scand J Soc Med. 1995;23(1):60-5.
- [954] Latvala J, von Hertzen L, Lindholm H, Haahtela T. Trends in prevalence of asthma and allergy in Finnish young men: nationwide study, 1966-2003. Bmj. 2005 May 21;330(7501):1186-7.
- [955] Braback L, Hjern A, Rasmussen F. Body mass index, asthma and allergic rhinoconjunctivitis in Swedish conscripts-a national cohort study over three decades. Respir Med. 2005 Aug;99(8):1010-4.
- [956] Wuthrich B. Epidemiology of the allergic diseases: are they really on the increase? Int Arch Allergy Appl Immunol. 1989;1:3-10.
- [957] Grize L, Gassner M, Wuthrich B, Bringolf-Isler B, Takken-Sahli K, Sennhauser FH, et al. Trends in

prevalence of asthma, allergic rhinitis and atopic dermatitis in 5-7-year old Swiss children from 1992 to 2001. Allergy. 2006 May;61(5):556-62.

- [958] von-Mutius E, Martinez FD, Fritzsch C, Nicolai T, Roell G, Thiemann HH. Prevalence of asthma and atopy in two areas of West and East Germany. Am J Respir Crit Care Med. 1994;149(2 Pt 1):358-64.
- [959] Soto-Quiros ME, Silverman EK, Hanson LA, Weiss ST, Celedon JC. Maternal history, sensitization to allergens, and current wheezing, rhinitis, and eczema among children in Costa Rica. Pediatr Pulmonol. 2002 Apr;33(4):237-43.
- [960] Crockett AJ, Cranston JM, Alpers JH. The changing prevalence of asthma-like respiratory symptoms in South Australian rural schoolchildren. J Paediatr Child Health. 1995;31(3):213-7.
- [961] Nicolaou N, Siddique N, Custovic A. Allergic disease in urban and rural populations: increasing prevalence with increasing urbanization. Allergy. 2005 Nov;60(11):1357-60.
- [962] Edfors-Lubs M. Allergy in 7,000 twin pairs. Acta Allergol. 1971;26:249-85.
- [963] Pedersen PA, Weeke ER. Allergic rhinitis in Danish general practice. Prevalence and consultation rates. Allergy. 1981;36(6):375-9.
- [964] Braback L, Kalvesten L, Sundstrom G. Prevalence of bronchial asthma among schoolchildren in a Swedish district. Acta Paediatr Scand. 1988;77(6):821-5.
- [965] Riikjarv MA, Annus T, Braback L, Rahu K, Bjorksten B. Similar prevalence of respiratory symptoms and atopy in Estonian schoolchildren with changing lifestyle over 4 yrs. Eur Respir J. 2000 Jul;16(1):86-90.
- [966] Leynaert B, Neukirch C, Jarvis D, Chinn S, Burney P, Neukirch F. Does living on a farm during childhood protect against asthma, allergic rhinitis, and atopy in adulthood? Am J Respir Crit Care Med. 2001;164(10 Pt 1):1829-34.
- [967] Kilpelainen M, Terho EO, Helenius H, Koskenvuo M. Childhood farm environment and asthma and sensitization in young adulthood. Allergy. 2002 Dec;57(12):1130-5.
- [968] Wickens K, Lane JM, Fitzharris P, Siebers R, Riley G, Douwes J, et al. Farm residence and exposures and the risk of allergic diseases in New Zealand children. Allergy. 2002 Dec;57(12):1171-9.
- [969] Braun-Fahrlander C. Environmental exposure to endotoxin and other microbial products and the decreased risk of childhood atopy: evaluating developments since April 2002. Curr Opin Allergy Clin Immunol. 2003 Oct;3(5):325-9.
- [970] Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002 Sep 19;347(12):869-77.
- [971] von Mutius E. Environmental factors influencing the development and progression of pediatric asthma. J Allergy Clin Immunol. 2002 Jun;109(6 Suppl):S525-32.
- [972] van Strien RT, Engel R, Holst O, Bufe A, Eder W, Waser M, et al. Microbial exposure of rural school children, as assessed by levels of N-acetyl-muramic acid in mattress dust, and its association with respiratory health. J Allergy Clin Immunol. 2004 May;113(5):860-7.
- [973] Perkin MR, Strachan DP. Which aspects of the farming lifestyle explain the inverse association with childhood allergy? J Allergy Clin Immunol. 2006 Jun;117(6):1374-81.
- [974] von-Mutius E, Fritzsch C, Weiland SK, Roll G, Magnussen H. Prevalence of asthma and allergic disorders among children in united Germany: a descriptive comparison. Bmj. 1992;305(6866):1395-9.
- [975] Braback L, Breborowicz A, Dreborg S, Knutsson A, Pieklik H, Bjorksten B. Atopic sensitization and respiratory symptoms among Polish and Swedish school children. Clin Exp Allergy. 1994;24(9):826-35.
- [976] Dotterud LK, Odland JO, Falk ES. Atopic diseases among adults in the two geographically related arctic

areas Nikel, Russia and Sor-Varanger, Norway: possible effects of indoor and outdoor air pollution. J Eur Acad Dermatol Venereol. 2000 Mar;14(2):107-11.

- [977] Heinrich J, Hoelscher B, Jacob B, Wjst M, Wichmann HE. Trends in allergies among children in a region of former East Germany between 1992-1993 and 1995-1996. Eur J Med Res. 1999;4(3):107-13.
- [978] Heinrich J, Richter K, Magnussen H, Wichmann HE. Is the prevalence of atopic diseases in East and West Germany already converging? Eur J Epidemiol. 1998;14(3):239-45.
- [979] Annus T, Riikjarv MA, Rahu K, Bjorksten B. Modest increase in seasonal allergic rhinitis and eczema over 8 years among Estonian schoolchildren. Pediatr Allergy Immunol. 2005 Jun;16(4):315-20.
- [980] Yemaneberhan H, Bekele Z, Venn A, Lewis S, Parry E, Britton J. Prevalence of wheeze and asthma and relation to atopy in urban and rural Ethiopia [see comments]. Lancet. 1997;350(9071):85-90.
- [981] Odhiambo JA, Ng'ang'a LW, Mungai MW, Gicheha CM, Nyamwaya JK, Karimi F, et al. Urban-rural differences in questionnaire-derived markers of asthma in Kenyan school children. Eur Respir J. 1998;12(5):1105-12.
- [982] MacIntyre UE, de Villiers FP, Owange-Iraka JW. Increase in childhood asthma admissions in an urbanising population. S Afr Med J. 2001;91(8):667-72.
- [983] Addo-Yobo EO, Custovic A, Taggart SC, Asafo-Agyei AP, Woodcock A. Exercise induced bronchospasm in Ghana, differences in prevalence between urban and rural schoolchildren. Thorax. 1997;52(2):161-5.
- [984] Nyan OA, Walraven GE, Banya WA, Milligan P, Van Der Sande M, Ceesay SM, et al. Atopy, intestinal helminth infection and total serum IgE in rural and urban adult Gambian communities. Clin Exp Allergy. 2001 Nov;31(11):1672-8.
- [985] Walraven GE, Nyan OA, Van Der Sande MA, Banya WA, Ceesay SM, Milligan PJ, et al. Asthma, smoking and chronic cough in rural and urban adult communities in The Gambia. Clin Exp Allergy. 2001 Nov;31(11):1679-85.
- [986] Yemaneberhan H, Flohr C, Lewis SA, Bekele Z, Parry E, Williams HC, et al. Prevalence and associated factors of atopic dermatitis symptoms in rural and urban Ethiopia. Clin Exp Allergy. 2004 May;34(5):779-85.
- [987] Sunyer J, Torregrosa J, Anto J, Menendez C, Acosta C, Schellenberg D, et al. The association between atopy and asthma in a semirural area of Tanzania (East Africa). Allergy. 2000;55(8):762-7.
- [988] Scrivener S, Britton J. Immunoglobulin E and allergic disease in Africa. Clin Exp Allergy. 2000;30(3):304-7.
- [989] Borkow G, Leng Q, Weisman Z, Stein M, Galai N, Kalinkovich A, et al. Chronic immune activation associated with intestinal helminth infections results in impaired signal transduction and anergy. J Clin Invest. 2000;106(8):1053-60.
- [990] Selassie FG, Stevens RH, Cullinan P, Pritchard D, Jones M, Harris J, et al. Total and specific IgE (house dust mite and intestinal helminths) in asthmatics and controls from Gondar, Ethiopia. Clin Exp Allergy. 2000;30(3):356-8.
- [991] Ottesen EA, Skvaril F, Tripathy SP, Poindexter RW, Hussain R. Prominence of IgG4 in the IgG antibody response to human filariasis. J Immunol. 1985;134(4):2707-12.
- [992] Kurniawan A, Yazdanbakhsh M, van Ree R, Aalberse R, Selkirk ME, Partono F, et al. Differential expression of IgE and IgG4 specific antibody responses in asymptomatic and chronic human filariasis. J Immunol. 1993;150(9):3941-50.
- [993] Hussain R, Poindexter RW, Ottesen EA. Control of allergic reactivity in human filariasis. Predominant localization of blocking antibody to the IgG4 subclass. J Immunol. 1992;148(9):2731-7.
- [994] Vercelli D, De Monte L, Monticelli S, Di Bartolo C, Agresti A. To E or not to E? Can an IL-4-induced B cell choose between IgE and IgG4? Int Arch Allergy Immunol. 1998;116(1):1-4.

- [995] Yazdanbakhsh K. Review: complement receptor 1 therapeutics for prevention of immune hemolysis. Immunohematol. 2005;21(3):109-18.
- [996] Yazdanbakhsh M, van den Biggelaar A, Maizels RM. Th2 responses without atopy: immunoregulation in chronic helminth infections and reduced allergic disease. Trends Immunol. 2001;22(7):372-7.
- [997] van den Biggelaar AH, van Ree R, Rodrigues LC, Lell B, Deelder AM, Kremsner PG, et al. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet. 2000;356(9243):1723-7.
- [998] Scrivener S, Yemaneberhan H, Zebenigus M, Tilahun D, Girma S, Ali S, et al. Independent effects of intestinal parasite infection and domestic allergen exposure on risk of wheeze in Ethiopia: a nested case-control study. Lancet. 2001;358(9292):1493-9.
- [999] van den Biggelaar AH, Rodrigues LC, van Ree R, van der Zee JS, Hoeksma-Kruize YC, Souverijn JH, et al. Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. J Infect Dis. 2004 Mar 1;189(5):892-900.
- [1000] Strachan DP. Hay fever, hygiene, and household size. Bmj. 1989;299(6710):1259-60.
- [1001] Svanes C, Jarvis D, Chinn S, Burney P. Childhood environment and adult atopy: results from the European Community Respiratory Health Survey. J Allergy Clin Immunol. 1999;103(3 Pt 1):415-20.
- [1002] Forastiere F, Sunyer J, Farchi S, Corbo G, Pistelli R, Baldacci S, et al. Number of offspring and maternal allergy. Allergy. 2005 Apr;60(4):510-4.
- [1003] Bach JF. Six questions about the hygiene hypothesis. Cell Immunol. 2005 Feb;233(2):158-61.
- [1004] Schaub B, Lauener R, von Mutius E. The many faces of the hygiene hypothesis. J Allergy Clin Immunol. 2006 May;117(5):969-77; quiz 78.
- [1005] Platts-Mills TA, Erwin E, Heymann P, Woodfolk J. Is the hygiene hypothesis still a viable explanation for the increased prevalence of asthma? Allergy. 2005;60 Suppl 79:25-31.
- [1006] Shirakawa T, Enomoto T, Shimazu S, Hopkin JM. The inverse association between tuberculin responses and atopic disorder [see comments]. Science. 1997;275(5296):77-9.
- [1007] Rook GA, Stanford JL. Skin-test responses to mycobacteria in atopy and asthma. Allergy. 1999 Mar;54(3):285-6.
- [1008] Omenaas E, Jentoft HF, Vollmer WM, Buist AS, Gulsvik A. Absence of relationship between tuberculin reactivity and atopy in BCG vaccinated young adults [see comments]. Thorax. 2000;55(6):454-8.
- [1009] Aaby P, Shaheen SO, Heyes CB, Goudiaby A, Hall AJ, Shiell AW, et al. Early BCG vaccination and reduction in atopy in Guinea-Bissau. Chn Exp Allergy. 2000 May;30(5):644-50.
- [1010] Ota MO, van der Sande MA, Walraven GE, Jeffries D, Nyan OA, Marchant A, et al. Absence of association between delayed type hypersensitivity to tuberculin and atopy in children in The Gambia. Clin Exp Allergy. 2003 Jun;33(6):731-6.
- [1011] Strannegard IL, Larsson LO, Wennergren G, Strannegard O. Prevalence of allergy in children in relation to prior BCG vaccination and infection with atypical mycobacteria Allergy. 1998 Mar;53(3):249-54.
- [1012] Alm JS, Lilja G, Pershagen G, Scheynius A. BCG vaccination does not seem to prevent atopy in children with atopic heredity. Allergy. 1998 May;53(5):537.
- [1013] Krause TG, Hviid A, Koch A, Friborg J, Hjuler T, Wohlfahrt J, et al. BCG vaccination and risk of atopy. Jama. 2003 Feb 26;289(8):1012-5.
- [1014] Bager P, Rostgaard K, Nielsen NM, Melbye M, Westergaard T. Age at bacille Calmette-Guerin vaccination and risk of allergy and asthma. Clin Exp Allergy. 2003 Nov;33(11):1512-7.
- [1015] Annus T, Montgomery SM, Riikjarv MA, Bjorksten B. Atopic disorders among Estonian schoolchildren in

relation to tuberculin reactivity and the age at BCG vaccination. Allergy. 2004 Oct;59(10):1068-73.

- [1016] Bremner SA, Carey IM, DeWilde S, Richards N, Maier WC, Hilton SR, et al. Timing of routine immunisations and subsequent hay fever risk. Arch Dis Child. 2005 Jun;90(6):567-73.
- [1017] Bibakis I, Zekveld C, Dimitroulis I, Pedioti A, Gerakianaki T, Fanourgiaki S, et al. Childhood atopy and allergic disease and skin test responses to environmental mycobacteria in rural Crete: a cross sectional survey. Clin Exp Allergy. 2005 May;35(5):624-9.
- [1018] Gruber C, Meinlschmidt G, Bergmann R, Wahn U, Stark K. Is early BCG vaccination associated with less atopic disease? An epidemiological study in German preschool children with different ethnic backgrounds. Pediatr Allergy Immunol. 2002 Jun;13(3):177-81.
- [1019] Garcia-Marcos L, Suarez-Varela MM, Canflanca IM, Garrido JB, Quiros AB, Lopez-Silvarrey Varela A, et al. BCG immunization at birth and atopic diseases in a homogeneous population of Spanish schoolchildren. Int Arch Allergy Immunol. 2005 Aug;137(4):303-9.
- [1020] Marks GB, Ng K, Zhou J, Toelle BG, Xuan W, Belousova EG, et al. The effect of neonatal BCG vaccination on atopy and asthma at age 7 to 14 years: an historical cohort study in a community with a very low prevalence of tuberculosis infection and a high prevalence of atopic disease. J Allergy Clin Immunol. 2003 Mar;111(3):541-9.
- [1021] Obihara CC, Beyers N, Gie RP, Potter PC, Marais BJ, Lombard CJ, et al. Inverse association between Mycobacterium tuberculosis infection and atopic rhinitis in children. Allergy. 2005 Sep;60(9):1121-5.
- [1022] Obihara CC, Kimpen JL, Gie RP, Lill SW, Hoekstra MO, Marais BJ, et al. Mycobacterium tuberculosis infection may protect against allergy in a tuberculosis endemic area. Clin Exp Allergy. 2006 Jan;36(1):70-6.
- [1023] Alm JS, Swartz J, Lilja G, Scheynius A, Pershagen G. Atopy in children of families with an anthroposophic lifestyle [see comments]. Lancet. 1999;353(9163):1485-8
- [1024] Bernsen R, van-der-Wouden J, Nagelkerke N, de-Jongste J. Early life circumstances and atopic disorders in childhood. Clin Exp Allergy. 2006;36(7):859-65.
- [1025] Matricardi PM, Rosmini F, Panetta V, Ferrigno L, Bonini S. Hay fever and asthma in relation to markers of infection in the United States. J Allergy Clin Immunol. 2002 Sep;110(3):381-7.
- [1026] Pelosi U, Porcedda G, Tiddia F, Tripodi S, Tozzi AE, Panetta V, et al. The inverse association of salmonellosis in infancy with allergic rhinoconjunctivitis and asthma at school-age: a longitudinal study. Allergy. 2005 May;60(5):626-30.
- [1027] Prioult G, Nagler-Anderson C. Mucosal immunity and allergic responses: lack of regulation and/or lack of microbial stimulation? Immunol Rev. 2005 Aug;206:204-18.
- [1028] Renz H, Blumer N, Virna S, Sel S, Garn H. The immunological basis of the hygiene hypothesis. Chem Immunol Allergy. 2006;91:30-48.
- [1029] Black PN. Does atopy protect against enteric infections? Allergy. 2005 Jan;60(1):30-4.
- [1030] Kilpelainen M, Terho EO, Helenius H, Koskenvuo M. Body mass index and physical activity in relation to asthma and atopic diseases in young adults. Respir Med. 2006 Feb 24.
- [1031] Radon K, Schulze A. Adult obesity, farm childhood, and their effect on allergic sensitization. J Allergy Clin Immunol. 2006 Dec;118(6):1279-83.
- [1032] Raebel MA, Malone DC, Conner DA, Xu S, Porter JA, Lanty FA. Health services use and health care costs of obese and nonobese individuals. Arch Intern Med. 2004 Oct 25;164(19):2135-40.
- [1033] Korsgaard J, Iversen M. Epidemiology of house dust mite allergy. Allergy. 1991;46 (suppl 11):14-8.

- [1034] Davies RJ, Rusznak C, Devalia JL. Why is allergy increasing?--environmental factors. Clin Exp Allergy. 1998;6:8-14.
- [1035] Wijga A, Smit HA, Brunekreef B, Gerritsen J, Kerkhof M, Koopman LP, et al. Are children at high familial risk of developing allergy born into a low risk environment? The PIAMA Birth Cohort Study. Prevention and Incidence of Asthma and Mite Allergy. Clin Exp Allergy. 2001;31(4):576-81.
- [1036] Huang SL, Lin KC, Pan WH. Dietary factors associated with physician-diagnosed asthma and allergic rhinitis in teenagers: analyses of the first Nutrition and Health Survey in Taiwan. Clin Exp Allergy. 2001 Feb;31(2):259-64.
- [1037] Kompauer I, Heinrich J, Wolfram G, Linseisen J. Association of carotenoids, tocopherols and vitamin C in plasma with allergic rhinitis and allergic sensitisation in adults. Public Health Nutr. 2006 Jun;9(4):472-9.
- [1038] Platts-Mills TA, Erwin EA, Woodfolk JA, Heymann PW. Environmental factors influencing allergy and asthma. Chem Immunol Allergy. 2006;91:3-15.
- [1039] Simola M, Holopainene E, Malmberg H. Changes in skin and nasal sensitivity to allergens and the course of rhinitis; a long-term follow-up study [see comments]. Ann Allergy Asthma Immunol. 1999;82(2):152-6.
- [1040] Eaton KK. The incidence of allergy--has it changed? Clin Allergy. 1982;12(1):107-10.
- [1041] Fleming DM, Crombie DL. Prevalence of asthma and hay fever in England and Wales. Br Med J Clin Res Ed. 1987;294(6567):279-83.
- [1042] Hagy GW, Settipane GA. Risk factors for developing asthma and allergic rhinitis. A 7-year follow-up study of college students. J Allergy Clin Immunol. 1976;58(2):330-6.
- [1043] Settipane RJ, Hagy GW, Settipane GA. Long-term risk factors for developing asthma and allergic rhinitis: a 23year follow-up study of college students. Allergy Proc. 1994;15(1):21-5.
- [1044] Linna O, Kokkonen J, Lukin M. A 10-year prognosis for childhood allergic rhinitis. Acta Paediatr 1992;81(2):100-2.
- [1045] Danielsson J, Jessen M. The natural course of allergic rhinitis during 12 years of follow-up. Allergy. 1997;52(3):331-4.
- [1046] Viner AS, Jackman N. Retrospective survey of 1271 patients diagnosed as perennial rhinitis. Clin Allergy. 1976;6(3):251-9.
- [1047] Bodtger U, Linneberg A. Remission of allergic rhinitis: An 8-year observational study. J Allergy Clin Immunol. 2004 Dec;114(6):1384-8.
- [1048] Nihlen U, Greiff L, Montnemery P, Lofdahl CG, Johannisson A, Persson C, et al. Incidence and remission of self-reported allergic rhinitis symptoms in adults. Allergy. 2006 Nov;61(11):1299-304.
- [1049] Kulig M, Klettke U, Wahn V, Forster J, Bauer CP, Wahn U. Development of seasonal allergic rhinitis during the first 7 years of life. J Allergy Clin Immunol. 2000 Nov;106(5):832-9.
- [1050] Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee Report. Allergy. 2004 May;59(5):469-78.
- [1051] Naclerio RM. Allergic rhinitis. N Engl J Med. 1991;325(12):860-9.
- [1052] Magnussen H, Jorres R, Nowak D. Effect of air pollution on the prevalence of asthma and allergy: lessons from the German reunification [editorial] [see comments]. Thorax. 1993;48(9):879-81.
- [1053] Kirmaz C, Aydemir O, Bayrak P, Yuksel H, Ozenturk O, Degirmenci S. Sexual dysfunction in patients with allergic rhinoconjunctivitis. Ann Allergy Asthma Immunol. 2005 Dec;95(6):525-9.
- [1054] Marshall PS, O'Hara C, Steinberg P. Effects of seasonal allergic rhinitis on fatigue levels and mood. Psychosom Med. 2002 Jul-Aug;64(4):684-91.

- [1055] Marshall PS, O'Hara C, Steinberg P. Effects of seasonal allergic rhinitis on selected cognitive abilities. Ann Allergy Asthma Immunol. 2000 Apr;84(4):403-10.
- [1056] Kremer B, den Hartog HM, Jolles J. Relationship between allergic rhinitis, disturbed cognitive functions and psychological well-being. Clin Exp Allergy. 2002 Sep;32(9):1310-5.
- [1057] Cuffel B, Wamboldt M, Borish L, Kennedy S, Crystal-Peters J. Economic consequences of comorbid depression, anxiety, and allergic rhinitis [In Process Citation]. Psychosomatics. 1999;40(6):491-6.
- [1058] Bavbek S, Kumbasar H, Tugeu H, Misirligil Z. Psychological status of patients with seasonal and perennial allergic rhinitis. J Investig Allergol Clin Immunol. 2002;12(3):204-10.
- [1059] Meltzer EO. Quality of life in adults and children with allergic rhinitis. J Allergy Chin Immunol. 2001 Jul;108(1 Suppl):S45-53.
- [1060] Gerth Van Wijk R. Quality of life, should we bother? Allergy. 2003 Apr;58(4):284-6.
   [1061] Leong KP, Yeak SC, Saurajen AS, Mok PK, Earnest A,
- [1061] Leong KP, Yeak SC, Saurajen AS, Mok PK, Earnest A, Siow JK, et al. Why generic and disease-specific qualityof-life instruments should be used together for the evaluation of patients with persistent allergic rhinitis. Clin Exp Allergy. 2005 Mar;35(3):288-98.
- [1062] Stewart AL, Hays RD, Ware J, Jr. The MOS short-form general health survey. Reliability and validity in a patient population. Med Care. 1988;26(7):724-35.
- [1063] Meltzer E, Nathan R, Selner J, Storms W. Quality of life and rhinitic symptoms: Results of a nationwide survey with the SF-36 and RQLQ questionnaires. J Allergy Clin Immunol. 1997;99(6, part 2):S815-9.
- [1064] Nishiike S, Ogino S, Irifune M, Arimoto H, Sakaguchi Y, Takeda M, et al. Measurement of quality of life during different clinical phases of Japanese cedar pollinosis. Auris Nasus Larynx. 2004 Jun;31(2):135-9.
- [1065] Ciprandi G, Canonica WG, Grosclaude M, Ostinelli J, Brazzola GG, Bousquet J. Effects of budesonide and fluticasone propionate in a placebo-controlled study on symptoms and quality of life in seasonal allergic rhinitis. Allergy. 2002 Jul;57(7):586-91.
- [1066] Bachert C, Bousquet J, Canonica GW, Durham SR, Klimek L, Mullol J, et al. Levocetirizine improves quality of life and reduces costs in long-term management of persistent allergic rhinitis. J Allergy Clin Immunol. 2004 Oct;114(4):838-44.
- [1067] Canonica GW, Bousquet J, Van Hammee G, Bachert C, Durham SR, Klimek L, et al. Levocetirizine improves health-related quality of life and health status in persistent allergic rhinitis. Respir Med. 2006 May 22.
- [1068] Baiardini I, Braido F, Brandi S, Canonica GW. Allergic diseases and their impact on quality of life. Ann Allergy Asthma Immunol. 2006 Oct;97(4):419-28; quiz 29-30, 76.
- [1069] Majani G, Baiardini I, Giardini A, Senna GE, Minale P, D'Ulisse S, et al. Health-related quality of life assessment in young adults with seasonal allergic rhinitis. Allergy. 2001 Apr;56(4):313-7.
- [1070] de-Graaf-in-'t-Veld T, Koenders S, Garrelds IM, Gerthvan-Wijk R. The relationships between nasal hyperreactivity, quality of life, and nasal symptoms in patients with perennial allergic rhinitis. J Allergy Clin Immunol. 1996;98(3):508-13.
- [1071] Marks G, Dunn S, Woolcock A. An evaluation of an asthma quality of life questionnaire as a measure of change in adults with asthma. J Clin Epidemiol. 1993;10:1103-11.
- [1072] van der Molen T, Sears MR, de Graaff CS, Postma DS, Meyboom-de Jong B. Quality of life during formoterol treatment: comparison between asthma- specific and generic questionnaires. Canadian and the Dutch Formoterol Investigators. Eur Respir J. 1998;12(1):30-4.
- [1073] Hallstrand TS, Curtis JR, Aitken ML, Sullivan SD. Quality of life in adolescents with mild asthma. Pediatr Pulmonol. 2003 Dec;36(6):536-43.

- [1074] Bousquet J, Knani J, Dhivert H, Richard A, Chicoye A, Ware J, Jr., et al. Quality of life in asthma. I. Internal consistency and validity of the SF-36 questionnaire. Am J Respir Crit Care Med. 1994;149(2 Pt 1):371-5.
- [1075] Meltzer EO, Casale TB, Nathan RA, Thompson AK. Once-daily fexofenadine HCl improves quality of life and reduces work and activity impairment in patients with seasonal allergic rhinitis [In Process Citation]. Ann Allergy Asthma Immunol. 1999;83(4):311-7.
- [1076] Schapowal A. Randomised controlled trial of butterbur and cetirizine for treating seasonal allergic rhinitis. Bmj. 2002;324(7330):144-6.
- [1077] Bousquet J, Duchateau J, Pignat JC, Fayol C, Marquis P, Mariz S, et al. Improvement of quality of life by treatment with cetirizine in patients with perennial allergic rhinitis as determined by a French version of the SF-36 questionnaire. J Allergy Clin Immunol. 1996;98(2):309-16.
- [1078] Burtin B, Duchateau J, Pignat JC, Donnelly F, Bousquet J. Further improvement of quality of life by cetirizine in perennial allergic rhinitis as a function of treatment duration. J Investig Allergol Clin Immunol. 2000 Mar-Apr;10(2):66-70.
- [1079] Kremer B. Quality of life scales in allergic rhinitis. Curr Opin Allergy Clin Immunol. 2004 Jun;4(3):171-6.
- [1080] Juniper EF, Guyatt GH. Development and testing of a new measure of health status for clinical trials in rhinoconjunctivitis. Clin Exp Allergy. 1991;21(1):77-83.
- [1081] Juniper EF, Guyatt GH, Andersson B, Ferrie PJ. Comparison of powder and aerosolized budesonide in perennial rhinitis: validation of rhinitis quality of life questionnaire. Ann Allergy. 1993;70(3):225-30.
- [1082] Leong KP, Chan SP, Tang CY, Yeak SC, Saurajen AS, Mok PK, et al. Quality of life of patients with perennial allergic rhinitis: preliminary validation of the Rhinoconjunctivitis Quality of Life Questionnaire in Singapore. Asian Pac J Allergy Immunol. 1999;17(3):163-7.
- [1083] Bunnag C, Leurmarnkul W, Jareoncharsri P, Tunsuriyawong P, Assanasen P, Pawankar R. Quality of life assessment in Thai patients with allergie rhinoconjunctivitis using the SF-36 questionnaire (Thai version). Rhinology. 2005 Jun;43(2):99-103.
- [1084] Okuda M, Ohkubo K, Goto M, Okamoto H, Konno A, Baba K, et al. Comparative study of two Japanese rhinoconjunctivitis quality-of-life questionnaires. Acta Otolaryngol. 2005 Jul;125(7):736-44.
- [1085] Juniper EF, Howland WC, Roberts NB, Thompson AK, King DR. Measuring quality of life in children with rhinoconjunctivitis. J Allergy Clin Immunol. 1998;101(2 Pt 1):163-70.
- [1086] Chen H, Katz PP, Eisner MD, Yelin EH, Blanc PD. Health-related quality of life in adult rhinitis: the role of perceived control of disease. J Allergy Clin Immunol. 2004 Oct;114(4):845-50.
- [1087] Roberts G, Mylonopoulou M, Hurley C, Lack G. Impairment in quality of life is directly related to the level of allergen exposure and allergic airway inflammation. Clin Exp Allergy. 2005 Oct;35(10):1295-300.
- [1088] Baiardini I, Pasquali M, Giardini A, Specchia C, Passalacqua G, Venturi S, et al. Rhinasthma: a new specific QoL questionnaire for patients with rhinitis and asthma. Allergy. 2003 Apr;58(4):289-94.
- [1089] Juniper EF, Guyatt GH, Archer B, Ferrie PJ. Aqueous beclomethasone dipropionate in the treatment of ragweed pollen- induced rhinitis: further exploration of "as needed" use. J Allergy Clin Immunol. 1993;92(1 Pt 1):66-72.
- [1090] Juniper EF, Willms DG, Guyatt GH, Ferrie PJ. Aqueous beclomethasone dipropionate nasal spray in the treatment of seasonal (ragweed) rhinitis. Cmaj. 1992;147(6):887-92.
- [1091] Meltzer EO. Clinical and antiinflammatory effects of intranasal budesonide aqueous pump spray in the

treatment of perennial allergic rhinitis. Ann Allergy Asthma Immunol. 1998;81(2):128-34.

- [1092] Condemi J, Schulz R, Lim J. Triamcinolone acetonide aqueous nasal spray versus loratadine in seasonal allergic rhinitis: efficacy and quality of life. Ann Allergy Asthma Immunol. 2000 May;84(5):533-8.
- [1093] Kaszuba SM, Baroody FM, deTineo M, Haney L, Blair C, Naclerio RM. Superiority of an intranasal corticosteroid compared with an oral antihistamine in the as-needed treatment of seasonal allergic rhinitis. Arch Intern Med. 2001 Nov 26;161(21):258)-7.
- [1094] Gross G, Jacobs RL, Woodworth TH, Georges GC, Lim JC. Comparative efficacy, safety, and effect on quality of life of triamcinolone acetonide and fluticasone propionate aqueous nasal sprays in patients with fall seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2002 Jul;89(1):56-62.
- [1095] Harvey RP, Comer C, Sanders B, Westley R, Marsh W, Shapiro H, et al. Model for outcomes assessment of antihistamine use for seasonal allergic rhinitis. J Allergy Clin Immunol. 1996;97(6):1233-41.
- [1096] Van Cauwenberge P, Juniper EF. Comparison of the efficacy, safety and quality of life provided by fexofenadine hydrochloride 120 mg, loratadine 10 mg and placebo administered once daily for the treatment of seasonal allergic rhinitis. Clin Exp Allergy. 2000 Jun;30(6):891-9.
- [1097] Noonan MJ, Raphael GD, Nayak A, Greos L, Olufade AO, Leidy NK, et al. The health-related quality of life effects of once-daily cetirizine HCl in patients with seasonal allergic rhinitis: a randomized double-blind, placebo-controlled trial. Clin Exp Allergy. 2003 Mar;33(3):351-8.
- [1098] Pasquali M, Baiardini I, Rogkakou A, Riccio AM, Gamalero C, Descalzi D, et al. Levocetirizine in persistent allergic rhinitis and asthma: effects on symptoms, quality of life and inflammatory parameters. Clin Exp Allergy. 2006 Sep;36(9):1161-7.
- [1099] Ratner PH, van-Bavel JH, Martin BG, Hampel F, Jr., Howland Wr, Rogenes PR, et al. A comparison of the efficacy of fluticasone propionate aqueous nasal spray and loratadine, alone and in combination, for the treatment of seasonal allergic rhinitis. J Fam Pract. 1998;47(2):118-25.
- [1100] Meltzer E, Malmstrom K, Lu S, Brenner B, Wei L, Weinstein S, et al. Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: placebo-controlled clinical trial. J Allergy Clin Immunol. 2000;105(5):917-22.
- [1101] Virchow JC, Bachert C. Efficacy and safety of montelukast in adults with asthma and allergic rhinitis. Respir Med. 2006 Apr 12.
- [1102] Walker SM, Pajno GB, Lima MT, Wilson DR, Durham SR. Grass pollen immunotherapy for seasonal rhinitis and asthma: a randomized, controlled trial. J Allergy Clin Immunol. 2001;107(1):87-93.
- [1103] Durham SR, Yang WH, Pedersen MR, Johansen N, Rak S. Sublingual immunotherapy with once-daily grass allergen tablets: a randomized controlled trial in seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2006 Apr;117(4):802-9.
- [1104] Frew AJ, Powell RJ, Corrigan CJ, Durham SR. Efficacy and safety of specific immunotherapy with SQ allergen extract in treatment-resistant seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2006 Feb;117(2):319-25.
- [1105] Adelroth É, Rak S, Haahtela T, Aasand G, Rosenhall L, Zetterstrom O, et al. Recombinant humanized mAb-E25, an anti-IgE mAb, in birch pollen-induced seasonal allergic rhinitis. J Allergy Clin Immunol. 2000 Aug;106(2):253-9.
- [1106] Terreehorst I, Duivenvoorden HJ, Tempels-Pavlica Z, Oosting AJ, de Monchy JG, Bruijnzeel-Koomen CA, et al. Comparison of a generic and a rhinitis-specific quality-of-life (QOL) instrument in patients with house dust mite allergy: relationship between the SF-36 and

Rhinitis QOL Questionnaire. Clin Exp Allergy. 2004 Nov;34(11):1673-7.

- [1107] Kim LS, Riedlinger JE, Baldwin CM, Hilli L, Khalsa SV, Messer SA, et al. Treatment of seasonal allergic rhinitis using homeopathic preparation of common allergens in the southwest region of the US: a randomized, controlled clinical trial. Ann Pharmacother. 2005 Apr;39(4):617-24.
- [1108] de Blic J, Wahn U, Billard E, Alt R, Pujazon MC. Levocetirizine in children: evidenced efficacy and safety in a 6-week randomized seasonal allergic rhinitis trial. Pediatr Allergy Immunol. 2005 May;16(3):267-75.
- [1109] Revicki DA, Leidy NK, Brennan-Diemer F, Thompson C, Togias A. Development and preliminary validation of the multiattribute Rhinitis Symptom Utility Index. Qual Life Res. 1998;7(8):693-702.
- [1110] Stuck BA, Czajkowski J, Hagner AE, Klimek L, Verse T, Hormann K, et al. Changes in daytime sleepiness, quality of life, and objective sleep patterns in seasonal allergic rhinitis: a controlled clinical trial. J Allergy Clin Immunol. 2004 Apr;113(4):663-8.
- [1111] Sundberg R, Toren K, Hoglund D, Aberg N, Brisman J. Nasal symptoms are associated with school performance in adolescents. J Adolesc Health. 2007 Jun;40(6):581-3.
- [1112] Walker S, Khan-Wasti S, Fletcher M, Cullinan P, Harris J, Sheikh A. Seasonal allergic rhinitis is associated with a detrimental effect on examination performance in United Kingdom teenagers: Case-control study. J Allergy Clin Immunol. 2007 Jun 7.
- [1113] Vuurman EF, van-Veggel LM, Sanders RL, Muntjewerff ND, O'Hanlon JF. Effects of semprex-D and diphenhydramine on learning in young adults with seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 1996;76(3):247-52.
- [1114] Blanc PD, Trupin L, Eisner M, Earnest G, Katz PP, Israel L, et al. The work impact of asthma and rhinitis: findings from a population-based survey. J Clin Epidemiol. 2001 Jun;54(6):610-8.
- [1115] Bousquet J, Demarteau N, Mullol J, van den Akker-van Marle ME, Van Ganse E, Bachert C. Costs associated with persistent allergic rhinitis are reduced by levocetirizine. Allergy. 2005 Jun;60(6):788-94.
- [1116] Kessler RC, Almeida DM, Berglund P, Stang P. Pollen and mold exposure impairs the work performance of employees with allergic rhinitis. Ann Allergy Asthma Immunol. 2001 Oct;87(4):289-95.
- [1117] Shedden A. Impact of nasal congestion on quality of life and work productivity in allergic rhinitis: findings from a large online survey. Treat Respir Med. 2005;4(6):439-46.
- [1118] Malone DC, Lawson KA, Smith DH, Arrighi HM, Battista C. A cost of illness study of allergic rhinitis in the United States. J Allergy Clin Immunol. 1997;99(1 Pt 1):22-7.
- [1119] Okubo K, Gotoh M, Shimada K, Ritsu M, Okuda M, Crawford B. Fexofenadine improves the quality of life and work productivity in Japanese patients with seasonal allergic rhinitis during the peak cedar pollinosis season. Int Arch Allergy Immunol. 2005 Feb;136(2):148-54.
  [1120] Fireman P. Treatment of allergic rhinitis: effect on
- [1120] Fireman P. Treatment of allergic rhinitis: effect on occupation productivity and work force costs. Allergy Asthma Proc. 1997;18(2):63-7.
- [1121] Cockburn IM, Bailit HL, Berndt ER, Finkelstein SN. Loss of work productivity due to illness and medical treatment [In Process Citation]. J Occup Environ Med. 1999;41(11):948-53.
- [1122] Smith TA, Patton J. Health surveillance in milling, baking and other food manufacturing operations--five years' experience. Occup Med. 1999;49(3):147-53.
- [1123] Gupta R, Sheikh A, Strachan DP, Anderson HR. Burden of allergic disease in the UK: secondary analyses of national databases. Clin Exp Allergy. 2004 Apr;34(4):520-6.
- [1124] Greiner AN. Allergic rhinitis: impact of the disease and considerations for management. Med Clin North Am. 2006 Jan;90(1):17-38.

- [1125] Kocabas CN, Civelek E, Sackesen C, Orhan F, Tuncer A, Adalioglu G, et al. Burden of rhinitis in children with asthma. Pediatr Pulmonol. 2005 Sep;40(3):235-40.
- [1126] Rice D, Hodgson T, Kopstein A. The economic cost of illness: a replication and update. Heath Care Financ Rev. 1985;7:61-80.
- [1127] Ray NF, Baraniuk JN, Thamer M, Rinehart CS, Gergen PJ, Kaliner M, et al. Direct expenditures for the treatment of allergic rhinoconjunctivitis in 1996, including the contributions of related airway illnesses. J Allergy Clin Immunol. 1999;103(3 Pt 1):401-7.
- [1128] Nash DB, Sullivan SD, Mackowiak J. Optimizing quality of care and cost effectiveness in treating allergic rhinitis in a managed care setting. Am J Manag Care. 2000 Jan;6(1 Suppl):S3-15; quiz S9-20.
- [1129] Reed SD, Lee TA, McCrory DC. The economic burden of allergic rhinitis: a critical evaluation of the literature. Pharmacoeconomics. 2004;22(6):345-61.
  [1130] Lozano P, Sullivan SD, Smith DH, Weiss KB. The
- [1130] Lozano P, Sullivan SD, Smith DH, Weiss KB. The economic burden of asthma in US children: estimates from the national medical expenditure survey [In Process Citation]. J Allergy Clin Immunol. 1999;104(5):957-63.
- [1131] Yawn BP, Yunginger JW, Wollan PC, Reed CE, Silverstein MD, Harris AG. Allergic rhinitis in Rochester, Minnesota residents with asthma: frequency and impact on health care charges. J Allergy Clin Immunol 1999;103(1 Pt 1):54-9.
- [1132] Crystal-Peters J, Crown WH, Goetzel RZ, Schutt DC. The cost of productivity losses associated with allergic rhinitis. Am J Manag Care. 2000 Mar;6(3):373-8.
- [1133] Schramm B, Ehlken B, Smala A, Quednau K, Berger K, Nowak D. Cost of illness of atopic asthma and seasonal allergic rhinitis in Germany: 1-yr retrospective study. Eur Respir J. 2003 Jan;21(1):116-22.
- [1134] Celik G, Mungan D, Abadoglu O, Pinar NM, Misirligil Z. Direct cost assessments in subjects with seasonal allergic rhinitis living in Ankara, Turkey. Allergy Asthma Proc. 2004 Mar-Apr;25(2):107-13.
- [1135] Okuda M. Cost implication of allergic rhinitis. Allergy Immunol. 1998;5:86-91.
- [1136] Revicki DA, Frank L. Pharmacoeconomic evaluation in the real world. Effectiveness versus efficacy studies. Pharmacoeconomics. 1999;15(5):423-34.
- [1137] Flay BR. Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs. Prev Med. 1986;15(5):451-74.
- [1138] Weinstein MC, Stason WB. Foundations of costeffectiveness analysis for health and medical practices. N Engl J Med. 1977;296(13):716-21.
- [1139] Siegel JE, Weinstein MC, Russell LB, Gold MR. Recommendations for reporting cost-effectiveness analyses. Panel on Cost-Effectiveness in Health and Medicine [see comments]. Jama. 1996;276(16):1339-41.
- [1140] Global strategy for asthma management and prevention. WHO/NHLBI workshop report: National Institutes of Health, National Heart, Lung and Blood Institute, Publication Number 95-3659; 1995 January 1995.
- [1141] Sullivan S, Elixhauser A, Buist AS, Luce BR, Eisenberg J, Weiss KB. National Asthma Education and Prevention Program working group report on the cost effectiveness of asthma care. Am J Respir Crit Care Med. 1996;154(3 Pt 2):S84-95.
- [1142] Lange B, Lukat KF, Rettig K, Holtappels G, Bachert C. Efficacy, cost-effectiveness, and tolerability of mometasone furoate, levocabastine, and disodium cromoglycate nasal sprays in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2005 Sep;95(3):272-82.
- [1143] Stahl E, van Rompay W, Wang EC, Thomson DM. Costeffectiveness analysis of budesonide aqueous nasal spray and fluticasone propionate nasal spray in the treatment of perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2000 Apr;84(4):397-402.
- [1144] Sullivan PW, Nichol MB. The economic impact of payer policies after the Rx-to-OTC switch of second-generation antihistamines. Value Health. 2004 Jul-Aug;7(4):402-12.

- [1145] Sullivan PW, Follin SL, Nichol MB. Cost-benefit analysis of first-generation antihistamines in the treatment of allergic rhinitis. Pharmacoeconomics. 2004;22(14):929-42.
- [1146] Schadlich PK, Brecht JG. Economic evaluation of specific immunotherapy versus symptomatic treatment of allergic rhinitis in Germany. Pharmacoeconomics. 2000;17(1):37-52
- [1147] Schoenwetter WF, Dupclay L, Jr., Appajosyula S, Botteman MF, Pashos CL. Economic impact and qualityof-life burden of allergic rhinitis. Curr Med Res Opin. 2004 Mar;20(3):305-17.
- [1148] Szeinbach SL, Williams PB, Kucukarslan S, Elhefni H. Influence of patient care provider on patient health outcomes in allergic rhinitis. Ann Allergy Asthma Immunol. 2005 Aug;95(2):167-74.
- [1149] Demoly P, Michel F, Bousquet J. In vivo methods for study of allergy. Skin tests, techniques and interpretation. In: Middleton E, Reed C, Ellis E, Adkinson N, Yunginger J, Busse W, eds. Allergy, Principles and Practice, Fifth Edition. St Louis (Mo): Mosby Co 1998:530-9.
- [1150] Nelson HS. Advances in upper airway diseases and allergen immunotherapy. J Allergy Clin Immunol. 2004 Apr;113(4):635-42
- [1151] Bousquet J, Chanez P, Chanal I, Michel FB. Comparison between RAST and Pharmacia CAP system: a new automated specific IgE assay. J Allergy Clin Immunol. 1990;85(6):1039-43.
- [1152] Pastorello EA, Incorvaia C, Pravettoni V, Marelli A, Farioli L, Ghezzi M. Clinical evaluation of CAP System and RAST in the measurement of specific IgE. Allergy. 1992;47(5):463-6.
- [1153] Eriksson NE. Allergy screening with Phadiatop and CAP Phadiatop in combination with a questionnaire in adults with asthma and rhinitis. Allergy. 1990;45(4):285-92.
- [1154] ARIA in the pharmacy: management of allergic rhinitis symptoms in the pharmacy. Allergic rhinitis and its impact on asthma. Allergy. 2004 Apr;59(4):373-87.
- [1155] Bousquet J, VanCauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma (ARIA)- Executive summary. Allergy. 2002;58:in press.
- [1156] Apter AJ, Mott AE, Cain WS, Spiro JD, Barwick MC Olfactory loss and allergic rhinitis [clinical conference]. J Allergy Clin Immunol. 1992;90(4 Pt 1):670-80.
- [1157] Apter AJ, Mott AE, Frank ME, Clive JM. Allergic rhinitis and olfactory loss. Ann Allergy Asthma Immunol. 1995;75(4):311-6.
- [1158] Mori J, Aiba T, Sugiura M, Matsumoto K, Tomiyama K, Okuda F, et al. Clinical study of olfactory disturbance. Acta Otolaryngol Suppl. 1998;538:197-201.
- [1159] Doty RL, Mishra A. Olfaction and its alteration by nasal obstruction, rhinitis, and rhinosinusitis. Laryngoscope. 2001 Mar;111(3):409-23.
- [1160] Hadley JA, Schaefer SD. Clinical evaluation of rhinosinusitis: history and physical examination. Otolaryngol Head Neck Surg. 1997;117(3 Pt 2):S8-11.
- [1161] Irwin RS. Silencing chronic cough [see comments]. Hosp Pract. 1999;34(1):53-60; quiz 129-30.
- [1162] Spaeth J, Schultze V, Klimek L, Lengersdorf A, Mosges R. Azelastine reduces histamine-induced swelling of nasal mucosa. Orl J Otorhinolaryngol Relat Spec. 1996;58(3):157-63.
- [1163] Pepys J. Skin testing. Br J Hosp Med. 1975;14:412.
- [1164] Osterballe O, Weeke B. A new lancet for skin prick testing. Allergy. 1979;34(4):209-12.
- [1165] Menardo JL, Bousquet J, Michel FB. Comparison of three prick test methods with the intradermal test and with the rast in the diagnosis of mite allergy. Ann Allergy. 1982;48(4):235-9.
- [1166] Malling HJ, Andersen CE, Boas MB, Holgersen F, Munch EP, Weeke B. The allergy pricker. Qualitative aspects of skin prick testing using a precision needle. Allergy. 1982;37(8):563-7. [1167] Perrin LF, Dechamp C, Deviller P, Joly P.
- Reproducibility of skin tests. A comparative study of the

Pepys prick test and the Morrow-Brown needle and their correlation with the serum IgE level. Clin Allergy. 1984;14(6):581-8

- [1168] Basomba A, Sastre A, Pelaez A, Romar A, Campos A, Garcia-Villalmanzo A. Standardization of the prick test. A comparative study of three methods. Allergy. 1985;40(6):395-9.
- [1169] Chanal I, Horst M, Segalen C, Dreborg S, Michel FB, Bousquet J. Comparison between modified skin prick test with standardized allergen extracts and Phazet. J Allergy Clin Immunol. 1988;82(5 Pt 1):878-81.
- [1170] Adinoff AD, Rosloniec DM, McCall LL, Nelson HS. A comparison of six epicutaneous devices in the performance of immediate hypersensitivity skin testing J Allergy Clin [see comments]. Immunol. 1989;84(2):168-74.
- [1171] Demoly P, Bousquet J, Manderscheid JC, Dreborg S, Dhivert H, Michel FB, Precision of skin prick and puncture tests with nine methods [see comments]. J Allergy Clin Immunol. 1991;88(5):758-62.
- [1172] Nelson HS, Rosloniec DM, McCall LI, Ikle D. Comparative performance of five commercial prick skin test devices. J Allergy Clin Immunol. 1993;92(5):750-6.
- [1173] Engler DB, DeJarnatt AC, Sim TC, Lee JL, Grant JA. Comparison of the sensitivity and precision of four skin test devices. J Allergy Clin Immunol. 1992;90(6 Pt 1):985-91.
- [1174] Piette V, Bourret E, Bousquet J, Demoly P. Prick tests to aeroallergens: is it possible simply to wipe the device between tests? Allergy. 2002 Oct;57(10):940-2
- [1175] Oppenheimer J, Nelson HS. Skin testing. Ann Allergy Asthma Immunol. 2006 Feb;96(2 Suppl 1):S6-12
- [1176] Wood RA, Phipatanakul W, Hamilton RG, Eggleston PA. A comparison of skin prick tests, intradermal skin tests, and RASTs in the diagnosis of cat allergy. J Allergy Clin Immunol. 1999;103(5 Pt 1):773-9.
- [1177] Dreborg S, Backman A, Basomba A, Bousquet J, Dieges P, Malling H. Skin tests used in type I allergy testing. Position paper of the European Academy of Allergy and Clinical Immunology. Allergy. 1989;44 (suppl 10):1-69.
- [1178] Lockey RF, Benedict LM, Turkeltaub PC, Bukantz SC. Fatalities from immunotherapy (IT) and skin testing (ST). J Allergy Clin Immunol. 1987;79(4):660-77
- [1179] Reid MJ, Lockey RF, Turkeltaub PC, Platts-Mills TA. Survey of fatalities from skin testing and immunotherapy 1985-1989. J Allergy Clin Immunol. 1993;92(1 Pt 1):6-15
- [1180] Romano A, Di Fonso M, Giuffreda F, Quaratino D, Papa G, Palmieri V, et al. Diagnostic work-up for fooddependent, exercise-induced anaphylaxis. Allergy. 1995 Oct;50(10):817-24
- [1181] Cuesta-Herranz J, Lazaro M, de las Heras M, Lluch M, Figueredo E, Umpierrez A, et al. Peach allergy pattern: experience in 70 patients. Allergy. 1998 Jan;53(1):78-82.
- [1182] Sanchez-Lopez G, Cizur M, Sanz B, Sanz ML. Prickprick with fresh foods in patients with latex allergy. J Investig Allergol Clin Immunol. 2000 Sep-Oct;10(5):280-2.
- [1183] Hansen JG. The clinical diagnosis of acute rhinosinusitis and its therapeutic consequences. J Clin Epidemiol. 2004 Aug;57(8):864; author reply 5.
- [1184] Seidenari S, Manzini BM, Danese P. Patch testing with pollens of Gramineae in patients with atopic dermatitis Contact Dermatitis. and mucosal atopy. 1992 Aug;27(2):125-6.
- [1185] Mowad CM, Anderson CK. Commercial availability of a house dust mite patch test. Am J Contact Dermat. 2001 Jun;12(2):115-8.
- [1186] Darsow U, Vieluf D, Ring J. Atopy patch test with different vehicles and allergen concentrations: an approach to standardization. J Allergy Clin Immunol. 1995 Mar;95(3):677-84.
- [1187] Ring J, Darsow U, Gfesser M, Vieluf D. The 'atopy patch test' in evaluating the role of aeroallergens in atopic eczema. Int Arch Allergy Immunol. 1997 May-Jul;113(1-3):379-83.

- [1188] Niggemann B. The role of the atopy patch test (APT) in diagnosis of food allergy in infants and children with atopic dermatitis. Pediatr Allergy Immunol. 2001;12 Suppl 14:37-40.
- [1189] Turjanmaa K. The role of atopy patch tests in the diagnosis of allergy in atopic dermatitis. Curr Opin Allergy Clin Immunol. 2005 Oct;5(5):425-8.
- [1190] Heine RG, Verstege A, Mehl A, Staden U, Rolinck-Werninghaus C, Niggemann B. Proposal for a standardized interpretation of the atopy patch test in children with atopic dermatitis and suspected food allergy. Pediatr Allergy Immunol. 2006 May;17(3):213-7
- [1191] Heinemann C, Schliemann-Willers S, Kelterer D, Metzner U, Kluge K, Wigger-Alberti W, et al. The atopy patch test -- reproducibility and comparison of different evaluation methods. Allergy. 2002 Jul;57(7):641-5.
- [1192] Position paper: Allergen standardization and skin tests. The European Academy of Allergology and Clinical Immunology. Allergy. 1993;48(14 Suppl):48-82.
- [1193] Bousquet J, Lockey R, Malling H. WHO Position Paper. Allergen Immunotherapy: TherapeuticVaccines for allergic diseases. Allergy. 1998;53, suppl 54.
- [1194] Bernstein IL, Storms WW. Practice parameters for allergy diagnostic testing. Joint Task Force on Practice Parameters for the Diagnosis and Treatment of Asthma. The American Academy of Allergy, Asthma and Immunology and the American College of Allergy, Asthma and Immunology. Ann Allergy Asthma Immunol. 1995;75(6 Pt 2):543-625.
- [1195] Allergen skin testing. Board of Directors. American Academy of Allergy and Immunology. J Allergy Clin Immunol. 1993;92(5):636-7.
- [1196] Aas K, Backman A, Belin L, Weeke B. Standardization of allergen extracts with appropriate methods. The combined use of skin prick testing and radioallergosorbent tests. Allergy. 1978;33(3):130-7.
- [1197] Malling HJ. Skin prick testing and the use of histamine references. Allergy. 1984;39(8):596-601.
- [1198] Bousquet J, Djoukadar F, Hewitt B, Guerin B, Michel FB. Comparison of the stability of a mite and a pollen extract stored in normal conditions of use. Clin Allergy. 1985;15(1):29-35.
- [1199] Quiralte J, Gonzalez E, Arias De Saavedra JM, Villalba M, Florido JF, Saenz De San Pedro B, et al. Immunological activity of recombinant Ole e 1 in patients with Olea europaea pollinosis. Int Arch Allergy Immunol. 2000;122(2):101-7.
- [1200] Moser M, Crameri R, Menz G, Schneider T, Dudler T, Virchow C, et al. Cloning and expression of recombinant Aspergillus fumigatus allergen I/a (rAsp. f I/a) with IgE binding and type I skin test activity. J Immunol. 1992 Jul 15;149(2):454-60.
- [1201] Lynch NR, Thomas WR, Chua Y, Garcia N, Di Prisco MC, Lopez R. In vivo biological activity of recombinant Der p II allergen of house-dust mite. Int Arch Allergy Immunol. 1994 Sep;105(1):70-4.
- [1202] Kronqvist M, Johansson E, Magnusson CG, Olsson S, Eriksson TL, Gafvelin G, et al. Skin prick test and serological analysis with recombinant group 2 allergens of the dust mites L. destructor and T. putrescentiae. Clin Exp Allergy. 2000 May;30(5):670-6.
- [1203] Muller U, Fricker M, Wymann D, Blaser K, Crameri R. Increased specificity of diagnostic tests with recombinant major bee venom allergen phospholipase A2. Clin Exp Allergy. 1997 Aug;27(8):915-20.
  [1204] Bilo BM, Rueff F, Mosbech H, Bonifazi F, Oude-
- [1204] Bilo BM, Rueff F, Mosbech H, Bonifazi F, Oude-Elberink JN. Diagnosis of Hymenoptera venom allergy. Allergy. 2005 Nov;60(11):1339-49.
- [1205] Yip L, Hickey V, Wagner B, Liss G, Slater J, Breiteneder H, et al. Skin prick test reactivity to recombinant latex allergens. Int Arch Allergy Immunol. 2000 Apr;121(4):292-9.
- [1206] Laffer S, Duchene M, Reimitzer I, Susani M, Mannhalter C, Kraft D, et al. Common IgE-epitopes of recombinant Phl p I, the major timothy grass pollen allergen and

natural group I grass pollen isoallergens. Mol Immunol. 1996;33(4-5):417-26.

- [1207] Laffer S, Spitzauer S, Susani M, Pairleitner H, Schweiger C, Gronlund H, et al. Comparison of recombinant timothy grass pollen allergens with natural extract for diagnosis of grass pollen allergy in different populations. J Allergy Clin Immunol. 1996;98(3):652-8.
- [1208] Pauli G, Oster JP, Deviller P, Heiss S, Bessot JC, Susani M, et al. Skin testing with recombinant allergens rBet v 1 and birch profilin, rBet v 2: diagnostic value for birch pollen and associated allergies. J Allergy Clin Immunol. 1996;97(5):1100-9.
- [1209] Kusunoki T, Inoue Y, Korematsu S, Harazaki M, Yokota T, Hosoi S. Comparison of skin prick test with serially diluted wild-type and genetically engineered recombinant Der f2. Ann Allergy Asthma Immunol. 2000 Mar;84(3):366-8.
- [1210] Chand N, Diamantis W, Mahoney TP, Sofia RD. Phospholipase A2 induced airway hyperreactivity to cooling and acetylcholine in rat trachea: pharmacological modulation. Br J Pharmacol. 1988;94(4):1057-62.
- [1211] Chapman MD, Smith AM, Vailes LD, Arruda LK. Defined epitopes: in vivo and in vitro studies using recombinant allergens. Int Arch Allergy Immunol. 1997 May-Jul;113(1-3):102-4.
- [1212] Niederberger V, Pauli G, Gronlund H, Froschl R, Rumpold H, Kraft D, et al. Recombinant birch pollen allergens (rBet v 1 and rBet v 2) contain most of the IgE epitopes present in birch, alder, hornbeam, hazel, and oak pollen: a quantitative IgE inhibition study with sera from different populations. J Allergy Clin Immunol. 1998 Oct;102(4 Pt 1):579-91.
- [1213] Rossi RE, Monasterolo G, Operti D, Operti R, Berlen R. Evaluation of IgE antibodies to recombinant pollen allergens (Phl p 1, Phl p 2, and Phl p 5) in a random sample of patients with specific IgE to Phleum pratense. Allergy. 2000 Feb;55(2):181-4.
- [1214] Mothes N, Valenta R, Spitzauer S. Allergy testing: the role of recombinant allergens. Clin Chem Lab Med. 2006;44(2):125-32.
- [1215] Scheurer S. Improvement of the diagnosis of allergy by using purified allergens. Clin Exp Allergy. 2006 Dec;36(12):1483-6.
- [1216] Hoffmann A, Jamin A, Foetisch K, May S, Aulepp H, Haustein D, et al. Determination of the allergenic activity of birch pollen and apple prick test solutions by measurement of beta-hexosaminidase release from RBL-2H3 cells. Comparison with classical methods in allergen standardization. Allergy. 1999 May;54(5):446-54.
- [1217] Astier C, Morisset M, Roitel O, Codreanu F, Jacquenet S, Franck P, et al. Predictive value of skin prick tests using recombinant allergens for diagnosis of peanut allergy. J Allergy Clin Immunol. 2006 Jul;118(1):250-6.
- [1218] Reuter A, Lidholm J, Andersson K, Ostling J, Lundberg M, Scheurer S, et al. A critical assessment of allergen component-based in vitro diagnosis in cherry allergy across Europe. Clin Exp Allergy. 2006 Jun;36(6):815-23.
- [1219] Anhoej C, Backer V, Nolte H. Diagnostic evaluation of grass- and birch-allergic patients with oral allergy syndrome. Allergy. 2001 Jun;56(6):548-52.
- [1220] Budde IK, Lopuhaa CE, de Heer PG, Langdon JM, MacDonald SM, van der Zee JS, et al. Lack of correlation between bronchial late allergic reaction to Dermatophagoides pteronyssinus and in vitro immunoglobulin E reactivity to histamine-releasing factor derived from mononuclear cells. Ann Allergy Asthma Immunol. 2002 Dec;89(6):606-12.
- [1221] Adinoff AD, Rosloniec DM, McCall LL, Nelson HS. Immediate skin test reactivity to Food and Drug Administration-approved standardized extracts. J Allergy Clin Immunol. 1990;86(5):766-74.
- [1222] van Aalderen WM, Postma DS, Koeter GH, de Monchy JG, Knol K. Adrenergic response in children with asthma on exogenous stimuli. Clin Exp Allergy. 1992;22(11):996-1002.

- [1223] Menardo JL, Bousquet J, Rodiere M, Astruc J, Michel FB. Skin test reactivity in infancy. J Allergy Clin Immunol. 1985;75(6):646-51.
- [1224] Ownby DR, Adinoff AD. The appropriate use of skin testing and allergen immunotherapy in young children. J Allergy Clin Immunol. 1994;94(4):662-5.
- [1225] Skassa-Brociek W, Manderscheid JC, Michel FB, Bousquet J. Skin test reactivity to histamine from infancy to old age. J Allergy Clin Immunol. 1987;80(5):711-6.
- [1226] King MJ, Lockey RF. Allergen prick-puncture skin
- testing in the elderly. Drugs Aging. 2003;20(14):1011-7. [1227] Oppenheimer JJ, Nelson HS. Seasonal variation in immediate skin test reactions. Ann Allergy. 1993;71(3):227-9.
- [1228] Haahtela T, Jokela H. Influence of the pollen season on immediate skin test reactivity to common allergens. Allergy. 1980;35(1):15-21.
- [1229] Simons FE. Advances in H1-antihistamines. N Engl J Med. 2004 Nov 18;351(21):2203-17.
- [1230] Simons FE, Simons KJ. Clinical pharmacology of new histamine H1 receptor antagonists. Clin Pharmacokinet. 1999;36(5):329-52.
- [1231] Simons FE, Johnston L, Gu X, Simons KJ. Suppression of the early and late cutaneous allergic responses using fexofenadine and montelukast. Ann Allergy Asthma Immunol. 2001 Jan;86(1):44-50.
- [1232] Hill SL, 3rd, Krouse JH. The effects of montelukast on intradermal wheal and flare. Otolaryngol Head Neck Surg. 2003 Sep;129(3):199-203.
- [1233] Ishizaka K, Ishizaka T. Identification of gamma-Eantibodies as a carrier of reaginic activity. J Immunol. 1967;99(6):1187-98.
- [1234] Johansson SG. Raised levels of a new immunoglobulin class (IgND) in asthma. Lancet. 1967;2(7523):951-3.
- [1235] Zetterstrom O, Johansson SG. IgE concentrations measured by PRIST in serum of healthy adults and in patients with respiratory allergy. A diagnostic approach. Allergy. 1981;36(8):537-47.
- [1236] Wide L, Bennich H, Johansson SG. Diagnosis of allergy by an in-vitro test for allergen antibodies. Lancet 1967;2(7526):1105-7.
- [1237] Johansson SG, Bennich H, Foucard T. Quantitation of IgE antibodies and allergens by the radioallergosorbent test, RAST. Int Arch Allergy Appl Immunol. 1973;45(1):55-6.
- [1238] Kelso JM, Sodhi N, Gosselin VA, Yunginger JW. Diagnostic performance characteristics of the standard Phadebas RAST, modified RAST, and pharmacia CAP system versus skin testing. Ann Allergy. 1991;67(5):511-
- [1239] de Blay F, Zana H, Offner M, Verot A, Velten M, Pauli G. Receiver operating characteristic analysis: a useful method for a comparison of the clinical relevance of two in vitro IgE tests. J Allergy Clin Immunol. 1993;92(2):255-63.
- [1240] Gleeson M, Cripps A, Hensley M, Wlodarczyk J, Henry R, Clancy R. A clinical evaluation in children of the Pharmacia ImmunoCAP system for inhalant allergens. Clin Exp Allergy. 1996;26:697-702.
- [1241] Cobbaett CM, Jonker GJ. Allergy testing on the IMMULITE 2000 Random-Access immunoanalyzer - a clinical evaluation study. Clin Chem Lab Med. 2005;43(7):772-81.
- [1242] Soderstrom L, Kober A, Ahlstedt S, de Groot H, Lange CE, Paganelli R, et al. A further evaluation of the clinical use of specific IgE antibody testing in allergic diseases. Allergy 2003 Sep;58(9):921-8.
- [1243] Ahlstedt S, Murray CS. In vitro diagnosis of allergy: how to interpret IgE antibody results in clinical practice. Prim Care Respir J. 2006 Aug;15(4):228-36.
- [1244] Bernstein I. Proceedings of the Task Force on Guidelines for standardizing old and new technologies used for the diagnosis and treatment of allergic diseases. J Allergy Clin Immunol. 1988;82:487-526.
- [1245] Yman L. Standardization of IgE antibody assays. J Int Fed Clin Chem. 1991;3(5):198-203.

- [1246] Laffer S, Vrtala S, Duchene M, van-Ree R, Kraft D, Scheiner O, et al. IgE-binding capacity of recombinant timothy grass (Phleum pratense) pollen allergens. J Allergy Clin Immunol. 1994;94(1):88-94.
- [1247] Rossi RE, Monasterolo G. Evaluation of recombinant and native timothy pollen (rPhl p 1, 2, 5, 6, 7, 11, 12 and nPhl p 4)- specific IgG4 antibodies induced by subcutaneous immunotherapy with timothy pollen extract in allergic patients. Int Arch Allergy Immunol. 2004 Sep;135(1):44-53.
- [1248] Crameri R, Lidholm J, Gronlund H, Stuber D, Blaser K, Menz G. Automated specific IgE assay with recombinant allergens: evaluation of the recombinant Aspergillus fumigatus allergen I in the Pharmacia Cap System. Clin Exp Allergy. 1996 Dec;26(12):1411-9.
- [1249] Van Ree R, Van Leeuwen WA, Akkerdaas JH, Aalberse RC. How far can we simplify in vitro diagnostics for Fagales tree pollen allergy? A study with three whole pollen extracts and purified natural and recombinant allergens. Clin Exp Allergy. 1999;29(6):848-55.
- [1250] Tresch S, Holzmann D, Baumann S, Blaser K, Wuthrich B, Crameri R, et al. In vitro and in vivo allergenicity of recombinant Bet v 1 compared to the reactivity of natural birch pollen extract. Clin Exp Allergy. 2003 Aug;33(8):1153-8.
- [1251] Rossi RE, Monasterolo G, Monasterolo S. Detection of specific IgE antibodies in the sera of patients allergic to birch pollen using recombinant allergens Bet v 1, Bet v 2, Bet v 4: evaluation of different IgE reactivity profiles. Allergy. 2003 Sep;58(9):929-32.
- [1252] Moverare R, Westritschnig K, Svensson M, Hayek B, Bende M, Pauli G, et al. Different IgE reactivity profiles in birch pollen-sensitive patients from six European populations revealed by recombinant allergens: an imprint of local sensitization. Int Arch Allergy Immunol. 2002 Aug;128(4):325-35.
- [1253] Cudowska B, Kaczmarski M. Diagnostic value of birch recombinant allergens (rBet v 1, profilin rBet v 2) in children with pollen-related food allergy. Rocz Akad Med Bialymst. 2004;49:111-5.
- [1254] Quiralte J, Llanes E, Barral P, Arias de Saavedra JM, Saenz de San Pedro B, Villalba M, et al. Ole e 2 and Ole e 10: new clinical aspects and genetic restrictions in olive pollen allergy. Allergy. 2005 Mar;60(3):360-5.
- [1255] Fonseca Fonseca L, Diaz AM. IgE reactivity from serum of Blomia tropicalis allergic patients to the recombinant protein Blo t 1. P R Health Sci J. 2003 Dec;22(4):353-7.
- [1256] Wolfowicz CB, HuangFu T, Chua KY. Expression and immunogenicity of the major house dust mite allergen Der p 1 following DNA immunization. Vaccine. 2003 Mar 7;21(11-12):1195-204.
- [1257] van Hage-Hamsten M, Johansson E. Clinical and immunologic aspects of storage mite allergy. Allergy. 1998;53(48 Suppl):49-53.
- [1258] Olsen E, Mohapatra SS. Recombinant allergens and diagnosis of grass pollen allergy. Ann Allergy. 1994;72(6):499-506.
- [1259] Park JW, Kim KS, Jin HS, Kim CW, Kang DB, Choi SY, et al. Der p 2 isoallergens have different allergenicity, and quantification with 2-site ELISA using monoclonal antibodies is influenced by the isoallergens. Clin Exp Allergy. 2002 Jul;32(7):1042-7.
- [1260] Mari A. Skin test with a timothy grass (Phleum pratense) pollen extract vs. IgE to a timothy extract vs. IgE to rPhl p 1, rPhl p 2, nPhl p 4, rPhl p 5, rPhl p 6, rPhl p 7, rPhl p 11, and rPhl p 12: epidemiological and diagnostic data. Clin Exp Allergy. 2003 Jan;33(1):43-51.
- [1261] De Amici M, Mosca M, Vignini M, Quaglini S, Moratti R. Recombinant birch allergens (Bet v 1 and Bet v 2) and the oral allergy syndrome in patients allergic to birch pollen. Ann Allergy Asthma Immunol. 2003 Nov;91(5):490-2.
- [1262] Wensing M, Akkerdaas JH, van Leeuwen WA, Stapel SO, Bruijnzeel-Koomen CA, Aalberse RC, et al. IgE to Bet v 1 and profilin: cross-reactivity patterns and clinical

relevance. J Allergy Clin Immunol. 2002 Sep;110(3):435-42.

- [1263] Chinoy B, Yee E, Bahna SL. Skin testing versus radioallergosorbent testing for indoor allergens. Clin Mol Allergy. 2005 Apr 15;3(1):4.
- [1264] Pastorello EA, Incorvaia C, Ortolani C, Bonini S, Canonica GW, Romagnani S, et al. Studies on the relationship between the level of specific IgE antibodies and the clinical expression of allergy: I. Definition of levels distinguishing patients with symptomatic from patients with asymptomatic allergy to common aeroallergens. J Allergy Clin Immunol. 1995;96(5 Pt 1):580-7.
- [1265] Niemeijer NR, Fluks AF, de Monchy JG. Optimization of skin testing. II. Evaluation of concentration and cutoff values, as compared with RAST and clinical history, in a multicenter study [see comments]. Allergy. 1993;48(7):498-503.
- [1266] Sampson HA. Utility of food-specific IgE concentrations in predicting symptomatic food allergy. J Allergy Clin Immunol. 2001;107(5):891-6.
- [1267] Boyano Martinez T, Garcia-Ara C, Diaz-Pena JM, Munoz FM, Garcia Sanchez G, Esteban MM. Validity of specific IgE antibodies in children with egg allergy. Clin Exp Allergy. 2001;31(9):1464-9.
- [1268] Rance F, Abbal M, Lauwers-Cances V. Improved screening for peanut allergy by the combined use of skin prick tests and specific IgE assays. J Allergy Clin Immunol. 2002;109(6):1027-33.
- [1269] Simpson A, Soderstrom L, Ahlstedt S, Murray CS, Woodcock A, Custovic A. IgE antibody quantification and the probability of wheeze in preschool children. J Allergy Clin Immunol. 2005 Oct;116(4):744-9.
- [1270] Deinhofer K, Sevcik H, Balic N, Harwanegg C, Hiller R, Rumpold H, et al. Microarrayed allergens for IgE profiling. Methods. 2004 Mar;32(3):249-54.
- [1271] Harwanegg C, Hiller R. Protein microarrays for the diagnosis of allergic diseases: state-of-the-art and future development. Clin Chem Lab Med. 2005;43(12):1321-6.
- [1272] Jahn-Schmid B, Harwanegg C, Hiller R, Bohle B, Ebner C, Scheiner O, et al. Allergen microarray: comparison of microarray using recombinant allergens with conventional diagnostic methods to detect allergenspecific serum immunoglobulin E. Clin Exp Allergy. 2003 Oct;33(10):1443-9.
- [1273] Matsuya T, Otake K, Tashiro S, Hoshino N, Katada M, Okuyama T. A new time-resolved fluorometric microarray detection system using core-shell-type fluorescent nanosphere and its application to allergen microarray. Anal Bioanal Chem. 2006 Jul;385(5):797-806.
- [1274] Shreffler WG, Lencer DA, Bardina L, Sampson HA. IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2. J Allergy Clin Immunol. 2005 Oct;116(4):893-9.
- [1275] Wohrl S, Vigl K, Zehetmayer S, Hiller R, Jarisch R, Prinz M, et al. The performance of a component-based allergen-microarray in clinical practice. Allergy. 2006 May;61(5):633-9.
- [1276] Ott H, Schroder CM, Stanzel S, Merk HF, Baron JM. Microarray-based IgE detection in capillary blood samples of patients with atopy. Allergy. 2006 Sep;61(9):1146-7.
- [1277] van Toorenenbergen AW, Oranje AP, Vermeulen AM, Aarsen RS. IgE antibody screening in children. Evaluation of the Phadiatop Paediatric. Allergy. 1991;46(3):180-5.
- [1278] Costongs GM, Bas BM. The first fully automated allergy analyser UniCAP: comparison with IMMULITE for allergy panel testing. Eur J Clin Chem Clin Biochem. 1997;35(11):885-8.
- [1279] Crobach MJ, Kaptein AA, Kramps JA, Hermans J, Ridderikhoff J, Mulder JD. The Phadiatop test compared with RAST, with the CAP system; proposal for a third

Phadiatop outcome: "inconclusive". Allergy. 1994;49(3):170-6.

- [1280] Kam KL, Hsieh KH. Comparison of three in vitro assays for serum IgE with skin testing in asthmatic children. Ann Allergy. 1994 Oct;73(4):329-36.
- [1281] Benveniste J. The human basophil degranulation test as an in vitro method for the diagnosis of allergies. Clin Allergy. 1981;11(1):1-11.
- [1282] Knol EF, Mul FP, Jansen H, Calafat J, Roos D. Monitoring human basophil activation via CD63 monoclonal antibody 435. J Allergy Clin Immunol. 1991;88(3 Pt 1):328-38.
- [1283] Knol EF, Koenderman L, Mul FP, Verhoeven AJ, Roos D. Differential activation of human basophils by anti-IgE and formyl- methionyl-leucyl-phenylalanine. Indications for protein kinase C- dependent and -independent activation pathways. Eur J Immunol. 1991;21(4):881-5.
- [1284] Saporta M, Kamei S, Persi L, Bousquet J, Arnoux B. Basophil activation during pollen season in patients monosensitized to grass pollens. Allergy. 2001;56(5):442-5.
- [1285] Sanz ML, Sanohez G, Gamboa PM, Vila L, Uasuf C, Chazot M, et al. Allergen-induced basophil activation: CD63 cell expression detected by flow cytometry in patients allergic to Dermatophagoides pteronyssinus and Lolium perenne. Clin Exp Allergy. 2001 Jul;31(7):1007-13.
- [1286] Gane P, Pecquet C, Crespeau H, Lambin P, Leynadier F, Rouger P. Flow cytometric monitoring of allergen induced basophil activation. Cytometry. 1995;19(4):361-5
- [1287] Nopp A, Johansson SG, Ankerst J, Bylin G, Cardell LO, Gronneberg R, et al. Basophil allergen threshold sensitivity: a useful approach to anti-IgE treatment efficacy evaluation. Allergy. 2006 Mar;61(3):298-302.
- [1288] Paris-Kohler A, Demoly P, Persi L, Lebel B, Bousquet J, Arnoux B. In vitro diagnosis of cypress pollen allergy by using cytofluorimetric analysis of basophils (Basotest). J Allergy Clin Immunol. 2000;105(2 Pt 1):339-45.
- [1289] Valenta R, Ferreira F, Grote M, Swoboda I, Vrtala S, Duchene M, et al. Identification of profilin as an actinbinding protein in higher plants. J Biol Chem. 1993;268(30):22777-81.
- [1290] Erdmann SM, Sachs B, Schmidt A, Merk HF, Scheiner O, Moll-Slodowy S, et al. In vitro analysis of birchpollen-associated food allergy by use of recombinant allergens in the basophil activation test. Int Arch Allergy Immunol. 2005 Mar;136(3):230-8.
- [1291] Rossi RE, Monasterolo G, Operti D. A comparative study of the tryptase release test and the cellular allergen stimulation test (CAST) in mite sensitive patients. Clin Exp Allergy. 1998;28(6):752-7.
- [1292] Medrala W, Malolepszy J, Medrala AW, Liebhart J, Marszalska M, Dobek R, et al. CAST-ELISA test--a new diagnostic tool in pollen allergy. J Investig Allergol Clin Immunol. 1997;7(1):32-5.
- [1293] Ferrer M, Sanz ML, Prieto I, Vila L, Oehling A. Study of IgE-dependent sulphidoleukotriene cellular releasability. J Investig Allergol Clin Immunol. 1998;8(1):17-22.
- [1294] Huggins KG, Brostoff J. Local production of specific IgE antibodies in allergic-rhinitis patients with negative skin tests. Lancet. 1975;2(7926):148-50.
- [1295] Powe DG, Jagger C, Kleinjan A, Carney AS, Jenkins D, Jones NS. 'Entopy': localized mucosal allergic disease in the absence of systemic responses for atopy. Clin Exp Allergy. 2003 Oct;33(10):1374-9.
- [1296] Miadonna A, Leggieri E, Tedeschi A, Zanussi C. Clinical significance of specific IgE determination on nasal secretion. Clin Allergy. 1983;13(2):155-64.
- [1297] Deuschl H, Johansson SG. Specific IgE antibodies in nasal secretion from patients with allergic rhinitis and with negative or weakly positive RAST on the serum. Clin Allergy. 1977;7(2):195-202.
- [1298] Ortolani C, Miadonna A, Adami R, Restuccia M, Zanussi C. Correlation of the specific IgE in serum and nasal

secretions with clinical symptoms in atopics. Clin Allergy. 1981;11(3):249-56.

- [1299] Clement PA. Committee report on standardization of rhinomanometry. Rhinology. 1984;22(3):151-5.
- [1300] Malm L, Gerth van Wijk R, Bachert C. Guidelines for nasal provocations with aspects on nasal patency, airflow, and airflow resistance. International Committee on Objective Assessment of the Nasal Airways, International Rhinologic Society. Rhinology. 2000 Mar;38(1):1-6.
- [1301] Nizandowska-Mogilnicka E, Bochenek G, Mastalerz L, Swierczynska M, Dahlen B, Dahlen S, et al. Aspirin provocation tests for diagnosis of aspirin sensitivity. EAACI/GA2LEN guideline. Allergy. 2007:in press.
- [1302] Andersson M, Greiff L, Svensson C, Persson C. Various methods for testing nasal responses in vivo: a critical review. Acta Otolaryngol Stockh. 1995;115(6):705-13.
- [1303] Raulf-Heimsoth M, Wirtz C, Papenfuss F, Baur X. Nasal lavage mediator profile and cellular composition of nasal brushing material during latex challenge tests. Clin Exp Allergy. 2000 Jan;30(1):110-21.
- [1304] Bellussi L, Marcucci F, Sensi LG, Passali GC, Lauriello M, Passali FM, et al. Do tryptase, ECP and specific IgE measurement by nasal incubation increase the specific nasal provocation test sensitivity? Int J Immunopathol Pharmacol. 2004 May-Aug;17(2):201-8.
- [1305] Palczynski C, Walusiak J, Krakowiak A, Szymczak W, Wittczak T, Ruta U, et al. Nasal lavage fluid examination in diagnostics of occupational allergy to chloramine. Int J Occup Med Environ Health. 2003;16(3):231-40.
- [1306] Wagenmann M, Schumacher L, Bachert C. The time course of the bilateral release of cytokines and mediators after unilateral nasal allergen challenge. Allergy. 2005 Sep;60(9):1132-8.
- [1307] Ciprandi G, Ricca V, Landi M, Passalacqua G, Bagnasco M, Canonica GW. Allergen-specific nasal challenge: response kinetics of clinical and inflammatory events to rechallenge. Int Arch Allergy Immunol. 1998;115(2):157-61.
- [1308] Bousquet J, Vignola AM, Campbell AM, Michel FB Pathophysiology of allergic rhinitis. Int Arch Allergy Immunol. 1996;110(3):207-18.
- [1309] Crimi E, Voltolini S, Gianiorio P, Orengo G, Troise C, Brusasco V, et al. Effect of seasonal exposure to pollen on specific bronchial sensitivity in allergic patients. J Allergy Clin Immunol. 1990 Jun;85(6):1014-9.
- [1310] Naclerio RM, Proud D, Kagey-Sobotka A, Lichtenstein LM, Hendley JO, Gwaltney J, Jr. Is histamine responsible for the symptoms of rhinovirus colds? A look at the inflammatory mediators following infection [published erratum appears in Pediatr Infect Dis J 1988 Oct;7(10):682]. Pediatr Infect Dis J. 1988;7(3):218-22.
- [1311] Eccles R, Eccles KS. Asymmetry in the autonomic nervous system with reference to the nasal cycle, migraine, anisocoria and Meniere's syndrome. Rhinology. 1981;19(3):121-5.
- [1312] Marquez F, Sastre J, Hernandez G, Cenjor C, Sanchez-Hernandez JM, Sanchez J, et al. Nasal hyperreactivity to methacholine measured by acoustic rhinometry in asymptomatic allergic and perennial nonallergic rhinitis. Am J Rhinol. 2000 Jul-Aug;14(4):251-6.
- [1313] Baroody FM, Wagenmann M, Naclerio RM. Comparison of the secretory response of the nasal mucosa to methacholine and histamine. J Appl Physiol. 1993;74(6):2661-71.
- [1314] Eggleston PA, Ansari AA, Adkinson N, Jr., Wood RA. Environmental challenge studies in laboratory animal allergy. Effect of different airborne allergen concentrations. Am J Respir Crit Care Med. 1995;151(3 Pt 1):640-6.
- [1315] Hytonen M, Leino T, Sala E, Kanerva L, Tupasela O, Malmberg H. Nasal provocation test in the diagnostics of hairdressers' occupational rhinitis. Acta Otolaryngol Suppl Stockh. 1997;529:133-6.

- [1316] Palczynski C, Walusiak J, Ruta U, Gorski P. Nasal provocation test in the diagnosis of natural rubber latex allergy. Allergy. 2000 Jan;55(1):34-41.
- [1317] Gosepath J, Amedee RG, Mann WJ. Nasal provocation testing as an international standard for evaluation of allergic and nonallergic rhinitis. Laryngoscope. 2005 Mar;115(3):512-6.
- [1318] Airaksinen L, Tuomi T, Vanhanen M, Voutilainen R, Toskala E. Use of nasal provocation test in the diagnostics of occupational rhinitis. Rhinology. 2007 Mar;45(1):40-6.
- [1319] Eggleston PA, Ansari AA, Ziemann B, Adkinson N, Jr., Corn M. Occupational challenge studies with laboratory workers allergic to rats. J Allergy Clin Immunol. 1990;86(1):63-72.
- [1320] Day JH, Briscoe M, Rafeiro E, Chapman D, Kramer B. Comparative onset of action and symptom relief with cetirizine, loratadine, or placebo in an environmental exposure unit in subjects with seasonal allergic rhinitis: confirmation of a test system. Ann Allergy Asthma Immunol. 2001 Dec 87(6):474-81.
- [1321] Day JH, Briscoe M, Widlitz MD. Cetirizine, loratadine, or placebo in subjects with seasonal allergic rhinitis: effects after controlled ragweed pollen challenge in an environmental exposure unit [see comments]. J Allergy Clin Immunol. 1998;101(5):638-45.
- [1322] Horak F, Stubner P, Zieglmayer R, Kavina A, De Vos C, Burtin B, et al. Controlled comparison of the efficacy and safety of cetirizine 10 mg o.d. and fexofenadine 120 mg o.d. in reducing symptoms of seasonal allergic rhinitis. Int Arch Allergy Immunol. 2001 May;125(1):73-9.
- [1323] Krug N, Loedding H, Hohlfeld JM, Larbig M, Buckendahl A, Badorrek P, et al. Validation of an environmental exposure unit for controlled human inhalation studies with grass pollen in patients with seasonal allergic rhinitis. Clin Exp Allergy. 2003 Dec;33(12):1667-74.
- [1324] Donnelly AL, Glass M, Minkwitz MC, Casale TB. The leukotriene D4-receptor antagonist, ICI 204,219, relieves symptoms of acute seasonal allergic rhinitis. Am J Respir Crit Care Med. 1995;151(6):1734-9.
- [1325] Meltzer EO, Rickard KA, Westlund RE, Cook CK. Onset of therapeutic effect of fluticasone propionate aqueous nasal spray. Ann Allergy Asthma Immunol. 2001 Mar;86(3):286-91.
- [1326] Nelson H, Oppenheimer J, Vatsia G, Buchmeier A. A double-blind, placebo-controlled evaluation of sublingual immunotherapy with standardized cat extract. J Allergy Clin Immunol. 1993;92:229-36.
- [1327] Wanger JS, Dockhorn RJ. Correlation of cat-hair (Fel d1) prick skin test to airway response using a live-cat-room challenge model. Allergy Asthma Proc. 1999 Nov-Dec;20(6):371-6.
- [1328] Wood RA, Eggleston PA. The effects of intranasal steroids on nasal and pulmonary responses to cat exposure. Am J Respir Crit Care Med. 1995 Feb;151(2 Pt 1):315-20.
- [1329] Norman PS, Ohman J, Jr., Long AA, Creticos PS, Gefter MA, Shaked Z, et al. Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1623-8.
- [1330] Horak F, Toth J, Hirschwehr R, Marks B, Stubner UP, Jager S, et al. Effect of continuous allergen challenge on clinical symptoms and mediator release in dust-miteallergic patients. Allergy. 1998 Jan;53(1):68-72.
- [1331] Kurtz KM, Hamilton RG, Schaefer JA, Adkinson NF, Jr. A hooded exposure chamber method for semiquantitative latex aeroallergen challenge. J Allergy Clin Immunol. 2001 Jan;107(1):178-84.
- [1332] Kurtz KM, Hamilton RG, Schaefer JA, Primeau MN, Adkinson NF, Jr. Repeated latex aeroallergen challenges employing a hooded exposure chamber: safety and reproducibility. Allergy. 2001 Sep;56(9):857-61.
- [1333] Kharitonov SA, Walker L, Barnes PJ. Repeatability of standardised nasal nitric oxide measurements in healthy

and asthmatic adults and children. Respir Med. 2005 Sep;99(9):1105-14.

- [1334] Steerenberg PA, van Amsterdam JG. Measurement of exhaled nitric oxide. Methods Mol Biol. 2004;279:45-68.
- [1335] ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005 Apr 15;171(8):912-30.
- [1336] Boot JD, de Kam ML, Mascelli MA, Miller B, van Wijk RG, de Groot H, et al. Nasal nitric oxide: longitudinal reproducibility and the effects of a nasal allergen challenge in patients with allergic rhinitis. Allergy. 2007 Apr:62(4):378-84.
- [1337] Chen W, Purohit A, Barnig C, Casset A, de Blay F. Niox and Niox Mino: comparison of exhaled NO in grass pollen allergic adult volunteers. Allergy. 2007 May;62(5):571-2.
- [1338] Narang I, Ersu R, Wilson NM, Bush A. Nitric oxide in chronic airway inflammation in children: diagnostic use and pathophysiological significance. Thorax. 2002 Jul;57(7):586-9.
- [1339] Scadding GK. Non-allergic rhinitis: diagnosis and management. Curr Opin Allergy Clin Immunol. 2001 Feb;1(1):15-20.
- [1340] Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med. 2004 Feb 15;169(4):459-67.
- [1341] Olin AC, Alving K, Toren K. Exhaled nitric oxide: relation to sensitization and respiratory symptoms. Clin Exp Allergy. 2004 Feb;34(2):221-6.
- [1342] Malmberg LP, Petays T, Haahtela T, Laatikainen T, Jousilahti P, Vartiainen E, et al. Exhaled nitric oxide in healthy nonatopic school-age children: determinants and height-adjusted reference values. Pediatr Pulmonol. 2006 Jul;41(7):635-42.
- [1343] Roberts G, Hurley C, Bush A, Lack G. Longitudinal study of grass pollen exposure, symptoms, and exhaled nitric oxide in childhood seasonal allergic asthma. Thorax. 2004 Sep;59(9):752-6.
- [1344] Eigenmann PA. Diagnosis of allergy syndromes: do symptoms always mean allergy? Allergy. 2005;60 Suppl 79:6-9.
- [1345] Hayden ML. Allergic rhinitis: a growing primary care challenge. J Am Acad Nurse Pract. 2001 Dec;13(12):545-51; quiz 52-4.
- [1346] Crobach MJ, Hermans J, Kaptein AA, Ridderikhoff J, Petri H, Mulder JD. The diagnosis of allergic rhinitis: how to combine the medical history with the results of radioallergosorbent tests and skin prick tests. Scand J Prim Health Care. 1998;16(1):30-6.
- [1347] Sibbald B, Barnes G, Durham SR. Skin prick testing in general practice: a pilot study. J Adv Nurs. 1997;26(3):537-42.
- [1348] van Ree R, Aalberse RC. Specific IgE without clinical allergy [editorial; comment]. J Allergy Clin Immunol. 1999;103(6):1000-1.
- [1349] Linblad J, Farr R. The incidence of positive intradermal reactions and the demonstration of skin sensitizing antibody to extracts of ragweed and dust in humans without history of rhinitis or asthma. J Allergy. 1961;32:392.
- [1350] Roane J, Crawford L, Triplett F, Brasher G. Intradermal tests in nonatopic children. Ann Allergy. 1968;26:443.
- [1351] Barbee RA, Lebowitz MD, Thompson HC, Burrows B. Immediate skin-test reactivity in a general population sample. Ann Intern Med. 1976;84(2):129-33.
- [1352] Backer V, Ulrik CS, Hansen KK, Laursen EM, Dirksen A, Bach-Mortensen N. Atopy and bronchial responsiveness in random population sample of 527 children and adolescents. Ann Allergy. 1992;69(2):116-22.
- [1353] Baldacci S, Modena P, Carrozzi L, Pedreschi M, Vellutini M, Biavati P, et al. Skin prick test reactivity to common aeroallergens in relation to total IgE, respiratory

symptoms, and smoking in a general population sample of northern Italy. Allergy. 1996;51(3):149-56. [1354] Jansen DF, Rijcken B, Schouten JP, Kraan J, Weiss ST,

- [1354] Jansen DF, Rijcken B, Schouten JP, Kraan J, Weiss ST, Timens W, et al. The relationship of skin test positivity, high serum total IgE levels, and peripheral blood eosinophilia to symptomatic and asymptomatic airway hyperresponsiveness. Am J Respir Crit Care Med. 1999;159(3):924-31.
- [1355] Kerkhof M, Droste JH, de Monchy JG, Schouten JP, Rijcken B. Distribution of total serum IgE and specific IgE to common aeroallergens by sex and age, and their relationship to each other in a random sample of the Dutch general population aged 20-70 years. Dutch ECRHS Group, European Community Respiratory Health Study. Allergy. 1996 Nov;51(11):770-6.
- [1356] Rasmussen F, Siersted HC, Lambrechtsen J, Hansen HS, Hansen NC. Impact of airway lability, atopy, and tobacco smoking on the development of asthma-like symptoms in asymptomatic teenagers. Chest. 2000;117(5):1330-5.
- [1357] Peat JK, Salome CM, Woolcock AJ. Longitudinal changes in atopy during a 4-year period: relation to bronchial hyperresponsiveness and respiratory symptoms in a population sample of Australian schoolchildren. J Allergy Clin Immunol. 1990;85(1 Pt 1):65-74.
- [1358] Bodtger U, Poulsen LK, Linneberg A. Rhinitis symptoms and IgE sensitization as risk factors for development of later allergic rhinitis in adults. Allergy. 2006 Jun;61(6):712-6.
- [1359] Bodtger U, Poulsen LK, Malling HJ. Asymptomatic skin sensitization to birch predicts later development of birch pollen allergy in adults: a 3-year follow-up study. J Allergy Clin Immunol. 2003 Jan;111(1):149-54.
- [1360] Horak F. Manifestation of allergic rhinitis in latentsensitized patients. A prospective study. Arch Otorhinolaryngol. 1985;242(3):239-45.
- [J361] Pepys J. Types of allergic reaction. Clin Allergy. 1973 Dec;3 Suppl:491-509.
- [1362] Bousquet J, Anto JM, Bachert C, Bousquet PJ, Colombo P, Crameri R, et al. Factors responsible for differences between asymptomatic subjects and patients presenting an IgE sensitization to allergens. A GALEN project. Allergy. 2006 Jun;61(6):671-80.
- [1363] Wickman M, Lilja G, Soderstrom L, van Hage-Hamsten M, Ahlstedt S. Quantitative analysis of IgE antibodies to food and inhalant allergens in 4-year-old children reflects their likelihood of allergic disease. Allergy. 2005 May;60(5):650-7.
- [1364] Valenta R, Duchene M, Ebner C, Valent P, Sillaber C, Deviller P, et al. Profilins constitute a novel family of functional plant pan-allergens. J Exp Med. 1992;175(2):377-85.
- [1365] Silvestri M, Rossi GA, Cozzani S, Pulvirenti G, Fasce L. Age-dependent tendency to become sensitized to other classes of aeroallergens in atopic asthmatic children. Ann Allergy Asthma Immunol. 1999 Oct;83(4):335-40.
- [1366] Verini M, Rossi N, Verrotti A, Pelaccia G, Nicodemo A, Chiarelli F. Sensitization to environmental antigens in asthmatic children from a central Italian area. Sci Total Environ. 2001 Apr 10;270(1-3):63-9.
- [1367] Mari A. Multiple pollen sensitization: a molecular approach to the diagnosis. Int Arch Allergy Immunol. 2001 May;125(1):57-65.
- [1368] Witteman AM, Stapel SO, Perdok GJ, Sjamsoedin DH, Jansen HM, Aalberse RC, et al. The relationship between RAST and skin test results in patients with asthma or rhinitis: a quantitative study with purified major allergens. J Allergy Clin Immunol. 1996;97(1 Pt 1):16-25.
- [1369] Yunginger JW, Ahlstedt S, Eggleston PA, Homburger HA, Nelson HS, Ownby DR, et al. Quantitative IgE antibody assays in allergic diseases [In Process Citation]. J Allergy Clin Immunol. 2000;105(6 Pt 1):1077-84.
- [1370] Schafer T, Hoelscher B, Adam H, Ring J, Wichmann HE, Heinrich J. Hay fever and predictive value of prick test and specific IgE antibodies: a prospective study in

children. Pediatr Allergy Immunol. 2003 Apr;14(2):120-

- [1371] Nickelsen JA, Georgitis JW, Reisman RE. Lack of correlation between titers of serum allergen-specific IgE and symptoms in untreated patients with seasonal allergic rhinitis. J Allergy Clin Immunol. 1986;77(1 Pt 1):43-8.
- [1372] Host A, Halken S. Practical aspects of allergy-testing. Paediatr Respir Rev. 2003 Dec;4(4):312-8.
- [1373] Cockcroft DW, Davis BE, Boulet LP, Deschesnes F, Gauvreau GM, O'Byrne PM, et al. The links between allergen skin test sensitivity, airway responsiveness and airway response to allergen. Allergy. 2005 Jan;60(1):56-9.
- [1374] Poon AW, Goodman CS, Rubin RJ. In vitro and skin testing for allergy: comparable clinical utility and costs. Am J Manag Care. 1998 Jul;4(7):969-85.
- [1375] Duran-Tauleria E, Vignati G, Guedan MJ, Petersson CJ. The utility of specific immunoglobulin E measurements in primary care. Allergy. 2004 Aug;59 Suppl 78:35-41.
- [1376] Gendo K, Larson EB. Evidence-based diagnostic strategies for evaluating suspected allergic rhinitis. Ann Intern Med. 2004 Feb 17;140(4):278-89.
- [1377] Dykewicz MS, Fineman S, Skoner DP, Nicklas R, Lee R, Blessing-Moore J, et al. Diagnosis and management of rhinitis: complete guidelines of the Joint Task Force on Practice Parameters in Allergy, Asthma and Immunology. American Academy of Allergy, Asthma, and Immunology. Ann Allergy Asthma Immunol. 1998;81(5 Pt 2):478-518.
- [1378] Nathan A. How to treat hay fever and associated allergic conditions in the pharmacy. Pharm J. 2002;268:575-8.
- [1379] Mehl A, Verstege A, Staden U, Kulig M, Nocon M, Beyer K, et al. Utility of the ratio of food-specific IgE/total IgE in predicting symptomatic food allergy in children. Allergy. 2005 Aug;60(8):1034-9.
- [1380] Celik-Bilgili S, Mehl A, Verstege A, Staden U, Nocon M, Beyer K, et al. The predictive value of specific immunoglobulin E levels in serum for the outcome of oral food challenges. Clin Exp Allergy. 2005 Mar;35(3):268-73.
- [1381] Yunginger J. Food antigens. In: Metcalfe D, Sampson H, Simon R, eds. Food allergy Adverse reactions to foods and food additives. Boston: Blackwell Scientific Publications 1991:36-51.
- [1382] Dreborg S. Food allergy in pollen-sensitive patients. Ann Allergy. 1988;61(6 Pt 2):41-6.
- [1383] Dannaeus A, Inganas M. A follow-up study of children with food allergy. Clinical course in relation to serum IgE- and IgG-antibody levels to milk, egg and fish. Clin Allergy. 1981;11(6):533-9.
- [1384] Niggemann B, Celik-Bilgili S, Ziegert M, Reibel S, Sommerfeld C, Wahn U. Specific IgE levels do not indicate persistence or transience of food allergy in children with atopic dermatitis. J Investig Allergol Clin Immunol. 2004;14(2):98-103.
- [1385] Niggemann B, Beyer K. Diagnostic pitfalls in food allergy in children. Allergy 2005 Jan;60(1):104-7.
- [1386] Bock SA. A critical evaluation of clinical trials in adverse reactions to foods in children. J Allergy Clin Immunol. 1986;78(1) Pt 2):165-74.
- [1387] Sampson HA, Albergo R. Comparison of results of skin tests, RAST, and double-blind, placebo-controlled food challenges in children with atopic dermatitis. J Allergy Clin Immunol. 1984;74(1):26-33.
- [1388] Niggemann B. Rolinck-Werninghaus C, Mehl A, Binder C, Ziegert M. Beyer K. Controlled oral food challenges in children--when indicated, when superfluous? Allergy. 2005 Jul;60(7):865-70.
- [1389] Osterballe M, Hansen TK, Mortz CG, Bindslev-Jensen C. The clinical relevance of sensitization to pollenrelated fruits and vegetables in unselected pollensensitized adults. Allergy. 2005 Feb;60(2):218-25.
- [1390] Rasanen L, Kuusisto P, Penttila M, Nieminen M, Savolainen J, Lehto M. Comparison of immunologic tests in the diagnosis of occupational asthma and rhinitis. Allergy. 1994;49(5):342-7.

- [1391] Armstrong M, Jr. Office-based procedures in rhinosinusitis. Otolaryngol Clin North Am. 2005 Dec;38(6):1327-38.
- [1392] Lloyd GA, Lund VJ, Scadding GK. CT of the paranasal sinuses and functional endoscopic surgery: a critical analysis of 100 symptomatic patients. J Laryngol Otol. 1991;105(3):181-5.
- [1393] Mafee MF, Chow JM, Meyers R. Functional endoscopic sinus surgery: anatomy, CT screening, indications, and complications. Ajr Am J Roentgenol. (1993;160(4):735-44.
- [1394] Leipzig JR, Martin DS, Eisenbeis JF, Slavin RG. Computed tomographic study of the paranasal sinuses in allergic rhinitis. J Allergy Clin Immunol. 1996;98(6 Pt 1):1130-1.
- [1395] Bhattacharyya N, Fried MP. The accuracy of computed tomography in the diagnosis of chronic rhinosinusitis. Laryngoscope. 2003 Jan, 113(1):125-9.
  [1396] Mafee MF, Tran BH, Chapa AR. Imaging of
- [1396] Mafee MF, Tran BH, Chapa AR. Imaging of rhinosinusitis and its complications: plain film, CT, and MRI. Clin Rev Allergy Immunol. 2006 Jun;30(3):165-86.
- [1397] Shapiro MD, Som PM. MRI of the paranasal sinuses and nasal cavity. Radiol Clin North Am. 1989;27(2):447-75.
- [1398] Severity scoring of atopic dermatitis: the SCORAD index. Consensus Report of the European Task Force on Atopic Dermatitis. Dermatology. 1993;186(1):23-31.
- [1399] Juniper EF, O'Byrne PM, Ferrie PJ, King DR, Roberts JN. Measuring asthma control. Clinic questionnaire or daily diary? Am J Respir Crit Care Med. 2000;162(4 Pt 1):1330-4.
- [1400] Nathan RA, Sorkness CA, Kosinski M, Schatz M, Li JT, Marcus P, et al. Development of the asthma control test: a survey for assessing asthma control. J Allergy Clin Immunol. 2004 Jan;113(1):59-65.
- [1401] Hornblow AR, Kidson MA. The visual analogue scale for anxiety: a validation study. Aust N Z J Psychiatry. 1976 Dec;10(4):339-41.
- [1402] Price DD, McGrath PA, Rafii A, Buckingham B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain. 1983 Sep;17(1):45-56.
- [1403] Simola M, Malmberg H. Sensation of nasal airflow compared with nasal airway resistance in patients with rhinitis. Clin Otolaryngol. 1997;22(3):260-2.
- [1404] Linder A. Symptom scores as measures of the severity of rhinitis. Clin Allergy. 1988;18(1):29-37.
- [1405] Hallen H, Djupesland P, Kramer J, Toll K, Graf P. Evaluation of a new method for assessing symptoms. ORL J Otorhinolaryngol Relat Spec. 2001 Mar-Apr;63(2):92-5.
- [1406] Bousquet J, Lund VJ, Van Cauwenberge P, Bremard-Oury C, Mounedji N, Stevens MT, et al. Implementation of guidelines for seasonal allergic rhinitis: a randomized controlled trial. Allergy. 2003 Aug;58(8):733-41.
- [1407] Horst M, Hejjaoui A, Horst V, Michel FB, Bousquet J. Double-blind, placebo-controlled rush immunotherapy with a standardized Alternaria extract. J Allergy Clin Immunol. 1990;85(2):460-72.
- [1408] Herman D, Garay R, Le-Gal M. A randomized doubleblind placebo controlled study of azelastine nasal spray in children with perennial rhinitis. Int J Pediatr Otorhinolaryngol. 1997;39(1):1-8.
- [1409] van-Cauwenberge P, Lund V, Bousquet J, El-Akkad T. Profiles and symptom severity of patients presenting to general practice with seasonal allergic rhinitis. Allergy. 2000;55:S197 (abstract).
- [1410] Terreehorst I, Hak E, Oosting AJ, Tempels-Pavlica Z, de Monchy JG, Bruijnzeel-Koomen CA, et al. Evaluation of impermeable covers for bedding in patients with allergic rhinitis. N Engl J Med. 2003 Jul 17;349(3):237-46.
- [1411] Ottaviano G, Scadding GK, Coles S, Lund VJ. Peak nasal inspiratory flow; normal range in adult population. Rhinology. 2006 Mar;44(1):32-5.
- [1412] Frank RA, Gesteland RC, Bailie J, Rybalsky K, Seiden A, Dulay MF. Characterization of the sniff magnitude

test. Arch Otolaryngol Head Neck Surg. 2006 May;132(5):532-6.

- [1413] Katotomichelakis M, Balatsouras D, Tripsianis G, Tsaroucha A, Homsioglou E, Danielides V. Normative values of olfactory function testing using the 'sniffin' sticks'. Laryngoscope. 2007 Jan;117(1):114-20.
- [1414] Hummel T, Kobal G, Gudziol H, Mackay-Sim A. Normative data for the "Sniffin' Sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol. 2006 Sep 23.
- [1415] Cardesin A, Alobid I, Benitez P, Sierra E, de Haro J, Bernal-Sprekelsen M, et al. Barcelona Smell Test - 24 (BAST-24): validation and smell characteristics in the healthy Spanish population. Rhinology. 2006 Mar;44(1):83-9.
- [1416] Schmidt LM, Gotzsche PC. Of mites and men: reference bias in narrative review articles: a systematic review. J Fam Pract. 2005 Apr;54(4):334-8.
- [1417] Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn't [editorial] [see comments]. Bmj. 1996;312(7023):71-2.
- [1418] Bousquet J, Van Cauwenberge P. A critical appraisal of 'evidence-based medicine' in allergy and asthma. Allergy. 2004 Aug;59 Suppl 78:12-20.
- [1419] Schunemann HJ, Fretheim A, Oxman AD. Improving the use of research evidence in guideline development: 9. Grading evidence and recommendations. Health Res Policy Syst. 2006;4:21.
- [1420] AGREE-Collaboration. Development and validation of an international appraisal instrument for assessing the quality of clinical practice guidelines: the AGREE project. Qual Saf Health Care. 2003;12(1):18-23.
- [1421] Guyatt G, Vist G, Falck-Ytter Y, Kunz R, Magrini N, Schunemann H. An emerging consensus on grading recommendations. wwwevidence-basedmedicinecom. 2005;Module 37. Topic 2011:189.
- [1422] Guyatt G, Gutterman D, Baumann MH, Addrizzo-Harris D, Hylek EM, Phillips B, et al. Grading strength of recommendations and quality of evidence in clinical guidelines: report from an american college of chest physicians task force. Chest. 2006 Jan;129(1):174-81.
- [1423] Schunemann HJ, Jaeschke R, Cook DJ, Bria WF, El-Solh AA, Ernst A, et al. An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. Am J Respir Crit Care Med. 2006 Sep 1;174(5):605-14
- [1424] Last J. A Dictionary of Epidemiology. Oxford University press, New York, p 135 1995.
- [1425] Warner JA. Primary sensitization in infants. Ann Allergy Asthma Immunol. 1999;83(5):426-30.
- [1426] Wahn U, Lau S, Bergmann R, Kulig M, Forster J, Bergmann K, et al. Indoor allergen exposure is a risk factor for sensitization during the first three years of life. J Allergy Clin Immunol. 1997;99(6 Pt 1):763-9.
- [1427] Platts-Mills TA. The role of immunoglobulin E in allergy and asthma. Am J Respir Crit Care Med. 2001;164(8 Pt 2):S1-5.
- [1428] Global strategy for asthma management and prevention. GINA. Update from NHLBI/WHO Workshop Report 1995, Revised 2006, www.ginasthmacom. 2006.
- [1429] Sheikh A, Hurwitz B, Shehata Y. House dust mite avoidance measures for perennial allergic rhinitis. Cochrane Database Syst Rev. 2007(1):CD001563.
- [1430] Gotzsche PC, Johansen HK, Schmidt LM, Burr ML. House dust mite control measures for asthma. Cochrane Database Syst Rev. 2004(4):CD001187.
- [1431] Terreehorst I, Duivenvoorden HJ, Tempels-Pavlica Z, Oosting AJ, de Monchy JG, Bruijnzeel-Koomen CA, et al. The effect of encasings on quality of life in adult house dust mite allergic patients with rhinitis, asthma and/or atopic dermatitis. Allergy. 2005 Jul;60(7):888-93.
- [1432] Wood RA, Johnson EF, Van-Natta ML, Chen PH, Eggleston PA. A placebo-controlled trial of a HEPA air

cleaner in the treatment of cat allergy. Am J Respir Crit Care Med. 1998;158(1):115-20.

- [1433] Bjornsdottir US, Jakobinudottir S, Runarsdottir V, Juliusson S. The effect of reducing levels of cat allergen (Fel d 1) on clinical symptoms in patients with cat allergy. Ann Allergy Asthma Immunol. 2003 Aug;91(2):189-94.
- [1434] Marinho S, Simpson A, Custovic A. Allergen avoidance in the secondary and tertiary prevention of allergic diseases: does it work? Prim Care Respir J. 2006 Jun;15(3):152-8.
- [1435] Filon FL, Radman G. Latex allergy: a follow up study of 1040 healthcare workers. Occup Environ Med. 2006 Feb;63(2):121-5.
- [1436] Cullinan P, Tarlo S, Nemery B. The prevention of occupational asthma. Eur Respir J. 2003 Nov;22(5):853-60.
- [1437] Vandenplas O, Jamart J, Delwiche JP, Evrard G, Larbanois A. Occupational asthma caused by natural rubber latex: outcome according to cessation or reduction of exposure. J Allergy Clin Immunol. 2002 Jan;109(1):125-30.
- [1438] Slovak AJ, Orr RG, Teasdale EL. Efficacy of the helmet respirator in occupational asthma due to laboratory animal allergy (LAA). Am Ind Hyg Assoc J. 1985 Aug;46(8):411-5.
- [1439] Taivainen AI, Tukiainen HO, Terho EO, Husman KR. Powered dust respirator helmets in the prevention of occupational asthma among farmers. Scand J Work Environ Health. 1998 Dec;24(6):503-7.
- [1440] Eggleston PA, Butz A, Rand C, Curtin-Brosnan J, Kanchanaraksa S, Swartz L, et al. Home environmental intervention in inner-city asthma: a randomized controlled clinical trial. Ann Allergy Asthma Immunol. 2005 Dec;95(6):518-24.
- [J441] Kattan M, Stearns SC, Crain EF, Stout JW, Gergen PJ, Evans R, 3rd, et al. Cost-effectiveness of a home-based environmental intervention for inner-city children with asthma. J Allergy Clin Immunol. 2005 Nov;116(5):1058-63.
- [1442] Morgan WJ, Crain EF, Gruchalla RS, O'Connor GT, Kattan M, Evans R, 3rd, et al. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004 Sep 9;351(11):1068-80.
- [1443] Williams SG, Brown CM, Falter KH, Alverson CJ, Gotway-Crawford C, Homa D, et al. Does a multifaceted environmental intervention alter the impact of asthma on inner-city children? J Natl Med Assoc. 2006 Feb;98(2):249-60.
- [1444] Carter MC, Perzanowski MS, Raymond A, Platts-Mills TA. Home intervention in the treatment of asthma among inner-city children. J Allergy Clin Immunol. 2001;108(5):732-7.
- [1445] Franchi M, Carrer P, Kotzias D, Rameckers EM, Seppanen O, van Bronswijk JE, et al. Working towards healthy air in dwellings in Europe. Allergy. 2006 Jul;61(7):864-8.
- [1446] Marinker M. From compliance to accordance: achieving shared goals in medicine taking. Report of the Royal Pharmaceutical of Great Britain Working party. 1998.
- [1447] Kaliner MA. Patient preferences and satisfaction with prescribed nasal steroids for allergic rhinitis. Allergy Asthma Proc. 2001 Nov-Dec;22(6 Suppl 1):S11-5.
- [1448] Kaliner MA. Physician prescribing practices: the role of patient preference in the selection of nasal steroids. Allergy Asthma Proc. 2001 Nov-Dec;22(6 Suppl 1):S17-22
- [1449] Weiner JM, Abramson MJ, Puy RM. Intranasal corticosteroids versus oral H1 receptor antagonists in allergic rhinitis: systematic review of randomised controlled trials. Bmj. 1998;317(7173):1624-9.
- [1450] Management of allergic and nonallergic rhinitis. Agency for healthcare research and quality Evidence report/technology assessment number 67 AHRQ Publication No 02-E024 wwwahrqgov. 2002.

- [1451] Management of allergic rhinitis in the working-age population. Agency for healthcare research and quality Evidence report/technology assessment number 67 AHRQ Publication No 03-E015wwwahrqgov. 2003.
- [1452] Bojkowski CJ, Gibbs TG, Hellstern KH, Major EW, Mullinger B. Acrivastine in allergic rhinitis: a review of clinical experience. J Int Med Res. 1989;17(2):54B-68B.
- [1453] Bruno G, D'Amato G, Del-Giacco GS, Locci F, Gale NM, Errigo E, et al. Prolonged treatment with acrivastine for seasonal allergic rhinitis. J Int Med Res. 1989;17(2):40B-6B.
- [1454] Dockhorn RJ, Williams BO, Sanders RL. Efficacy of acrivastine with pseudoephedrine in treatment of allergic rhinitis due to ragweed. Ann Allergy Asthma Immunol. 1996;76(2):204-8.
- [1455] McTavish D, Sorkin EM. Azelastine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs. 1989;38(5):778-800.
- [1456] Allegra L, Paupe J, Wieseman HG, Baelde Y. Cetirizine for seasonal allergic rhinitis in children aged 2-6 years. A double-blind comparison with placebo. Pediatr Allergy Immunol. 1993;4(3):157-61.
- [1457] Masi M, Candiani R, van-de-Venne H. A placebocontrolled trial of cetirizine in seasonal allergic rhinoconjunctivitis in children aged 6 to 12 years. Pediatr Allergy Immunol. 1993;4(4 Suppl):47-52.
- [1458] Mansmann H, Jr., Altman RA, Berman BA, Buchman E, Dockhorn RJ, Leese PT, et al. Efficacy and safety of cetirizine therapy in perennial allergic rhinitis. Ann Allergy. 1992;68(4):348-53.
- [1459] Falliers CJ, Brandon ML, Buchman E, Connell JT, Dockhorn R, Leese PT, et al. Double-blind comparison of cetirizine and placebo in the treatment of seasonal rhinitis. Ann Allergy. 1991;66(3):257-62.
- [1460] Curran MP, Scott LJ, Perry CM. Cetirizine: a review of its use in allergic disorders. Drugs. 2004;64(5):523-61.
- [1461] Simons FE, Prenner BM, Finn A, Jr. Efficacy and safety of desloratadine in the treatment of perennial allergic rhinitis. J Allergy Clin Immunol. 2003 Mar;111(3):617-22.
- [1462] Kim K, Sussman G, Hebert J, Lumry W, Lutsky B, Gates D. Desloratadine therapy for symptoms associated with perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2006 Mar;96(3):460-5.
- [1463] Murdoch D, Goa KL, Keam SJ. Desloratadine: an update of its efficacy in the management of allergic disorders. Drugs. 2003;63(19):2051-77.
- [1464] Canonica GW, Tarantini F, Compalati E, Penagos M. Efficacy of desloratadine in the treatment of allergic rhinitis: a meta-analysis of randomized, double-blind, controlled trials. Allergy. 2007 Apr;62(4):359-66.
- [1465] Bousquet J, Gaudano EM, Palma Carlos AG, Staudinger H. A 12-week, placebo-controlled study of the efficacy and safety of ebastine, 10 and 20 mg once daily, in the treatment of perennial allergie rhinitis. Multicentre Study Group [In Process Citation] Allergy. 1999;54(6):562-8.
- [1466] Ratner PH, Lim JC, Georges GC. Comparison of oncedaily ebastine 20 mg, ebastine 10 mg, loratadine 10 mg, and placebo in the treatment of seasonal allergic rhinitis. The Ebastine Study Group. J Allergy Clin Immunol. 2000 Jun;105(6 Pt 1):1101-7.
- [1467] Hurst M, Spencer CM. Ebastine: an update of its use in allergic disorders. Drugs. 2000 Apr;59(4):981-1006.
- [1468] Howarth PH, Stern MA, Roi L, Reynolds R, Bousquet J. Double-blind, placebo-controlled study comparing the efficacy and safety of fexofenadine hydrochloride (120 and 180 mg once daily) and cetirizine in seasonal allergic rhinitis. J Allergy Clin Immunol. 1999;104(5):927-33.
- [1469] Van Cauwenberge P, Juniper EF. Comparison of the efficacy, safety and quality of life provided by fexofenadine hydrochloride 120 mg, loratadine 10 mg and placebo administered once daily for the treatment of seasonal allergic rhinitis [In Process Citation]. Clin Exp Allergy. 2000;30(6):891-9.
- [1470] Wahn U, Meltzer EO, Finn AF, Jr., Kowalski ML, Decosta P, Hedlin G, et al. Fexofenadine is efficacious

and safe in children (aged 6-11 years) with seasonal allergic rhinitis. J Allergy Clin Immunol. 2003 Apr;111(4):763-9.

- [1471] Simpson K, Jarvis B. Fexofenadine: a review of its use in the management of seasonal allergic rhinitis and chronic idiopathic urticaria. Drugs. 2000 Feb;59(2):301-21.
- [1472] Potter PC. Levocetirizine is effective for symptom relief including nasal congestion in adolescent and adult (PAR) sensitized to house dust mites. Allergy. 2003 Sep;58(9):893-9.
- [1473] Bruttmann G, Charpin D, Germouty J, Horak F, Kunkel G, Wittmann G. Evaluation of the efficacy and safety of loratadine in perennial allergic rhinitis. J Allergy Clin Immunol. 1989;83(2 Pt 1):411-6
- [1474] Gutkowski A, Bedard P, Del-Carpio J, Hebert J, Prevost M, Schulz J, et al. Comparison of the efficacy and safety of loratadine, terfenadine, and placebo in the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 1988;81(5 Pt 1):902-7.
- [1475] Beaumont G, Dobbins S, Latta D, McMillin WP. Mequitazine in the treatment of hayfever. Br J Clin Pract. 1990;44(5):183-8.
- [1476] Pukander JS, Karma PH, Penttila MA, Perala ME, Ylitalo P, Kataja MJ. Mequitazine and dexchlorpheniramine in perennial rhinitis. A doubleblind cross-over placebo-controlled study. Rhinology. 1990;28(4):249-56.
- [1477] Sabbah A, Daele J, Wade AG, Ben-Soussen P, Attali P. Comparison of the efficacy, safety, and onset of action of mizolastine, cetirizine, and placebo in the management of seasonal allergic rhinoconjunctivitis. MIZOCET Study Group [In Process Citation]. Ann Allergy Asthma Immunol. 1999;83(4):319-25.
- [1478] Freche C, Leynadier F, Horak F, Hide D, Gracia FD, Goos M, et al. Mizolastine provides effective symptom relief in patients suffering from perennial allergic rhinitis: a double-blind, placebo-controlled study versus loratadine. Ann Allergy Asthma Immunol. 2002 Sep;89(3):304-10.
- [1479] Guadano EM, Serra-Batlles J, Meseguer J, Castillo JA, De Molina M, Valero A, et al. Rupatadine 10 mg and ebastine 10 mg in seasonal allergic rhinitis: a comparison study. Allergy. 2004 Jul;59(7):766-71.
- [1480] Saint-Martin F, Dumur JP, Perez I, Izquierdo I. A randomized, double-blind, parallel-group study, comparing the efficacy and safety of rupatadine (20 and 10 mg), a new PAF and H1 receptor-specific histamine antagonist, to loratadine 10 mg in the treatment of seasonal allergic rhinitis. J Investig Allergol Clin Immunol. 2004;14(1):34-40.
- [1481] Martinez-Cocera C, De Molina M, Marti-Guadano E, Pola J, Conde J, Borja J, et al. Rupatadine 10 mg and cetirizine 10 mg in seasonal allergic rhinitis: a randomised, double-blind parallel study. J Investig Allergol Clin Immunol. 2005;15(1):22-9.
- [1482] Weiler JM, Donnelly A, Campbell BH, Connell JT, Diamond L, Hamilton LH, et al. Multicenter, doubleblind, multiple-dose, parallel-groups efficacy and safety trial of azelastine, chlorpheniramine, and placebo in the treatment of spring allergic rhinitis. J Allergy Clin Immunol. 1988;82(5 Pt 1):801-11.
- [1483] Kemp J, Bahna S, Chervinsky P, Rachelefsky G, Seltzer J, Vande-Stouwe R, et al. A compariosn of loratadine, a new nonsedating antihistamine, with clemastine and placebo in patients with fall seasonal allergic rhinitis. Am J Rhinol. 1987;3:151-4.
- [1484] Kirchhoff CH, Kremer B, Haaf-von Below S, Kyrein HJ, Mosges R. Effects of dimethindene maleate nasal spray on the quality of life in seasonal allergic rhinitis. Rhinology. 2003 Sep;41(3):159-66.
- [1485] Lai DS, Lue KH, Hsieh JC, Lin KL, Lee HS. The comparison of the efficacy and safety of cetirizine, oxatomide, ketotifen, and a placebo for the treatment of childhood perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2002 Dec;89(6):589-98.

- [1486] Wood SF, Barber JH. Oxatomide in the management of hay fever--a placebo-controlled double-blind study in general practice. Clin Allergy. 1981;11(5):491-7.
- [1487] McNeely W, Wiseman LR. Intranasal azelastine. A review of its efficacy in the management of allergic rhinitis [published erratum appears in Drugs 1999 Jan;57(1):8]. Drugs. 1998;56(1):91-114.
- [1488] LaForce C, Dockhorn RJ, Prenner BM, Chu TJ, Kraemer MJ, Widlitz MD, et al. Safety and efficacy of azelastine nasal spray (Astelin NS) for seasonal allergic rhinitis: a 4-week comparative multicenter trial [see comments]. Ann Allergy Asthma Immunol. 1996;76(2):181-8.
- [1489] LaForce CF, Corren J, Wheeler WJ, Berger WE. Efficacy of azelastine nasal spray in seasonal allergic rhinitis patients who remain symptomatic after treatment with fexofenadine. Ann Allergy Asthma Immunol. 2004 Aug;93(2):154-9.
- [1490] Giede-Tuch C, Westhoff M, Zarth A. Azelastine eyedrops in seasonal allergic conjunctivitis or rhinoconjunctivitis. A double-blind, randomized, placebo-controlled study. Allergy. 1998;53(9):857-62.
- [1491] Janssens MM, Vanden-Bussche G. Levocabastine: an effective topical treatment of allergic rhinoconjunctivitis. Clin Exp Allergy. 1991;2:29-36.
- [1492] Schata M, Jorde W, Richarz-Barthauer U. Levocabastine nasal spray better than sodium cromoglycate and placebo in the topical treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 1991;87(4):873-8.
- [1493] Dahl R, Pedersen B, Larsen B. Intranasal levocabastine for the treatment of seasonal allergic rhinitis: a multicentre, double-blind, placebo-controlled trial. Rhinology. 1995;33(3):121-5.
- [1494] Davies BH, Mullins J. Topical levocabastine is more effective than sodium cromoglycate for the prophylaxis and treatment of seasonal allergic conjunctivitis. Allergy. 1993;48(7):519-24.
- [1495] Abelson MB, Gomes PJ, Vogelson CT, Pasquine TA, Gross RD, Turner FD, et al. Clinical efficacy of olopatadine hydrochloride ophthalmic solution 0.2% compared with placebo in patients with allergic conjunctivitis or rhinoconjunctivitis: a randomized, double-masked environmental study. Clin Ther. 2004 Aug;26(8):1237-48.
- [1496] Meltzer EO, Hampel FC, Ratner PH, Bernstein DI, Larsen LV, Berger WE, et al. Safety and efficacy of olopatadine hydrochloride nasal spray for the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2005 Dec;95(6):600-6.
- [1497] Davies RJ, Lund VJ, Harten-Ash VJ. The effect of intranasal azelastine and beclomethasone on the symptoms and signs of nasal allergy in patients with perennial allergic rhinitis. Rhinology, 1993;31(4):159-64.
- perennial allergic rhinitis. Rhinology 1993;31(4):159-64. [1498] Prenner BM, Chervinsky P, Hampel F, Jr., Howland WC, Lawrence M, Meltzer EO, et al. Double-strength beclomethasone dipropionate (84 micrograms/spray) aqueous nasal spray in the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 1996;98(2):302-8.
- [1499] Scadding GK, Lund VJ, Jacques LA, Richards DH. A placebo-controlled study of fluticasone propionate aqueous nasal spray and beclomethasone dipropionate in perennial rhinitis; efficacy in allergic and non-allergic perennial rhinitis; Clin Exp Allergy. 1995;25(8):737-43.
- [1500] Norman PS, Creticos PS, Tobey R, Proud DG, Kagey-Sobotka A, Meyers DA, et al. Budesonide in grass pollen rhinitis. Ann Allergy. 1992;69(4):309-16.
- [1501] Wolthers OD, Jorgensen BA, Pedersen S. A doubleblind, placebo-controlled study of the effect of intranasal budesonide in the treatment of children with seasonal rhinitis. Acta Paediatr. 1992;81(11):902-6.
- [1502] Creticos P, Fireman P, Settipane G, Bernstein D, Casale T, Schwartz H. Intranasal budesonide aqueous pump spray (Rhinocort Aqua) for the treatment of seasonal allergic rhinitis. Rhinocort Aqua Study Group. Allergy Asthma Proc. 1998;19(5):285-94.
- [1503] Ratner PH, Wingertzahn MA, van Bavel JH, Hampel F, Darken PF, Hellbardt S, et al. Effectiveness of

ciclesonide nasal spray in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2006 Nov;97(5):657-63.

- [1504] Ratner PH, Wingertzahn MA, van Bavel JH, Hampel F, Darken PF, Shah T. Efficacy and safety of ciclesonide nasal spray for the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 2006 Nov;118(5):1142-8.
- [1505] Welsh PW, Stricker WE, Chu CP, Naessens JM, Reese ME, Reed CE, et al. Efficacy of beclomethasone nasal solution, flunisolide, and cromolyn in relieving symptoms of ragweed allergy Mayo Clin Proc. 1987;62(2):125-34.
- [1506] Ratner P, van Bavel J, Gross G, Bynum L, Munshi A. New formulation of aqueous flumisolide nasal spray in the treatment of allergic rhinitis: comparative assessment of safety, tolerability, and efficacy. Allergy Asthma Proc. 1996;17(3):149-56.
- [1507] Wiseman LR, Benfield P. Intranasal fluticasone propionate. A reappraisal of its pharmacology and clinical efficacy in the treatment of rhinitis. Drugs. 1997;53(5):885-907.
- [1508] Holm AF, Fokkens WJ, Godthelp T, Mulder PG, Vroom TM, Rijntjes E. A 1-year placebo-controlled study of intranasal fluticasone propionate aqueous nasal spray in patients with perennial allergic rhinitis: a safety and biopsy study. Clin Otolaryngol. 1998;23(1):69-73.
- [1509] Banov CH, Woehler TR, LaForce CF, Pearlman DS, Blumenthal MN, Morgan WF, et al. Once daily intranasal fluticasone propionate is effective for perennial allergic rhinitis. Ann Allergy. 1994;73(3):240-6.
- [1510] Kaiser HB, Naclerio RM, Given J, Toler TN, Ellsworth A, Philpot EE. Fluticasone furoate nasal spray: A single treatment option for the symptoms of seasonal allergic rhinitis. J Allergy Clin Immunol. 2007 Apr 4.
- [1511] Martin B, Ratner P, Hampel F, Andrews P, Toler T, Wu W, et al. Optimal dose selection of luticasone furoate nasal spray for the treatment of seasonal allergic rhinitis in adults and adolescents. Allergy Asthma Proc. 2007;28(2):210-25.
- [1512] Onrust SV, Lamb HM. Mometasone furoate. A review of its intranasal use in allergic rhinitis. Drugs. 1998;56(4):725-45.
- [1513] Hebert JR, Nolop K, Lutsky BN. Once-daily mometasone furoate aqueous nasal spray (Nasonex) in seasonal allergic rhinitis: an active- and placebocontrolled study. Allergy. 1996;51(8):569-76.
- [1514] Berkowitz RB, Bernstein DI, LaForce C, Pedinoff AJ, Rooklin AR, Damaraju CR, et al. Onset of action of mometasone furoate nasal spray (NASONEX) in seasonal allergic rhinitis. Allergy. 1999;54(1):64-9.
- [1515] Graft D, Aaronson D, Chervinsky P, Kaiser H, Melamed J, Pedinoff A, et al. A placebo- and active-controlled randomized trial of prophylactic treatment of seasonal allergic rhinitis with mometasone furoate aqueous nasal spray. J Allergy Clin Immunol. 1996;98(4):724-31.
- [1516] van Drunen C, Meltzer EO, Bachert C, Bousquet J, Fokkens WJ. Nasal allergies and beyond: a clinical review of the pharmacology, efficacy, and safety of mometasone furoate. Allergy. 2005;60 Suppl 80:5-19.
- [1517] Jeal W, Faulds D. Triamcinolone acetonide. A review of its pharmacological properties and therapeutic efficacy in the management of allergic rhinitis. Drugs. 1997;53(2):257-80.
- [1518] Banov CH, Silvers WS, Green AW, van Bavel JH, Winder JA, Feiss G, et al. Placebo-controlled, doubleblind study of the efficacy and safety of triamcinolone acetonide aerosol nasal inhaler in pediatric patients with seasonal allergic rhinitis. Clin Ther. 1996;18(2):265-72.
- [1519] Kaiser HB, Liao Y, Diener P, Leahy MJ, Garcia J, Georges G. Triamcinolone acetonide and fluticasone propionate nasal sprays provide comparable relief of seasonal allergic rhinitis symptoms regardless of disease severity. Allergy Asthma Proc. 2004 Nov-Dec;25(6):423-8.
- [1520] Bachert C, El-Akkad T. Patient preferences and sensory comparisons of three intranasal corticosteroids for the

treatment of allergic rhinitis. Ann Allergy Asthma Immunol. 2002 Sep;89(3):292-7.

- [1521] Philip G, Malmstrom K, Hampel FC, Weinstein SF, LaForce CF, Ratner PH, et al. Montelukast for treating seasonal allergic rhinitis: a randomized, double-blind, placebo-controlled trial performed in the spring. Clin Exp Allergy. 2002 Jul;32(7):1020-8.
- [1522] Patel P, Philip G, Yang W, Call R, Horak F, LaForce C, et al. Randomized, double-blind, placebo-controlled study of montelukast for treating perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2005 Dec;95(6):551-7.
- [1523] Chervinsky P, Philip G, Malice MP, Bardelas J, Nayak A, Marchal JL, et al. Montelukast for treating fall allergic rhinitis: effect of pollen exposure in 3 studies. Ann Allergy Asthma Immunol. 2004 Mar;92(3):367-73.
- [1524] Meltzer EO. Efficacy and patient satisfaction with cromolyn sodium nasal solution in the treatment of seasonal allergic rhinitis: a placebo-controlled study. Clin Ther. 2002 Jun;24(6):942-52.
- [1525] Druce HM, Goldstein S, Melamed J, Grossman J, Moss BA, Townley RG. Multicenter placebo-controlled study of nedocromil sodium 1% nasal solution in ragweed seasonal allergic rhinitis. Ann Allergy. 1990;65(3):212-6.
- [1526] Sipila P, Sorri M, Pukander J. Double-blind comparison of nedocromil sodium (1% nasal spray) and placebo in rhinitis caused by birch pollen. Clin Otolaryngol. 1987;12(5):365-70.
- [1527] Schuller DE, Selcow JE, Joos TH, Hannaway PJ, Hirsch SR, Schwartz HJ, et al. A multicenter trial of nedocromil sodium, 1% nasal solution, compared with cromolyn sodium and placebo in ragweed seasonal allergic rhinitis. J Allergy Clin Immunol. 1990;86(4 Pt 1):554-61.
- [1528] Magyar P, Gyori Z, Mark Z, Hutas I. The protective effect of N-acetyl-aspartyl-glutamate (NAAGA) against nasal obstruction provoked by antigen in allergic rhinitis. Allergy. 1993;48(8):631-3.
- [1529] Zubizaretta J. Azatadine maleate/pseudoephedrine sulfate repetabs versus placebo in the treatment of severe perennial allergic rhinitis. J Int Med Res. 1980;8(6):395-
- [1530] Bronsky E, Boggs P, Findlay S, Gawchik S, Georgitis J, Mansmann H, et al. Comparative efficacy and safety of a once-daily loratadine-pseudoephedrine combination versus its components alone and placebo in the management of seasonal allergic rhinitis. J Allergy Clin Immunol. 1995;96(2):139-47.
- [1531] Williams BO, Hull H, McSorley P, Frosolono MF, Sanders RL. Efficacy of acrivastine plus pseudoephedrine for symptomatic relief of seasonal allergic rhinitis due to mountain cedar. Ann Allergy Asthma Immunol. 1996;76(5):432-8
- [1532] Grossman J, Bronsky EA, Lanier BQ, Linzmayer MI, Moss BA, Schenkel EJ, et al. Loratadinepseudoephedrine combination versus placebo in patients with seasonal allergic rhinitis. Ann Allergy. 1989;63(4):317-21.
- [1533] Wellington K, Jarvis B. Cetirizine/pseudoephedrine. Drugs. 2001;61(15):2231-40; discussion 41-2.
- [1534] Berkowitz RB, McCafferty F, Lutz C, Bazelmans D, Godfrey P, Meeves S, et al. Fexofenadine HCl 60 mg/ pseudoephedrine HCl 120 mg has a 60-minute onset of action in the treatment of seasonal allergic rhinitis symptoms, as assessed in an allergen exposure unit. Allergy Asthma Proc. 2004 Sep-Oct;25(5):335-43.
- [1535] Druce HM, Spector SL, Fireman P, Kaiser H, Meltzer EO, Boggs P, et al. Double-blind study of intranasal ipratropium bromide in nonallergic perennial rhinitis. Ann Allergy. 1992;69(1):53-60.
- [1536] Meltzer EO, Orgel HA, Bronsky EA, Findlay SR, Georgitis JW, Grossman J, et al. Ipratropium bromide aqueous nasal spray for patients with perennial allergic rhinitis: a study of its effect on their symptoms, quality of life, and nasal cytology. J Allergy Clin Immunol. 1992;90(2):242-9.

- [1537] Finn A, Jr., Aaronson D, Korenblat P, Lumry W, Settipane G, Spector S, et al. Ipratropium bromide nasal spray 0.03% provides additional relief from rhinorrhea when combined with terfenadine in perennial rhinitis patients; a randomized, double-blind, active-controlled trial. Am J Rhinol. 1998;12(6):441-9.
- [1538] Leurs R, Church MK, Taglialatela M. H1-antihistamines: inverse agonism, anti-inflammatory actions and cardiac effects. Clin Exp Allergy. 2002 Apr;32(4):489-98.
- [1539] Bousquet J, Van-Cauwenberge P, Bachert C, Canonica G, Demoly P, Durhma S, et al. Requirements for medications commonly used in the treatment of allergic rhinitis. Allergy. 2003:in press.
- [1540] Holgate S, Canonica G, Simons F, Taglialatela M, Tharp M, Timmerman H, et al. Consensus group on newgeneration antihistamines (CONGA): present status and recommendations. Clin Exp Allergy. 2003 Sep;33(9):1305-24.
- [1541] Skassa-Brociek W, Bousquet J, Montes F, Verdier M, Schwab D, Lherminier M, et al. Double-blind placebocontrolled study of loratadine, mequitazine, and placebo in the symptomatic treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 1988;81(4):725-30.
- [1542] Hindmarch, Shamsi Z. The effects of single and repeated administration of ebastine on cognition and psychomotor performance in comparison to triprolidine and placebo in healthy volunteers. Curr Med Res Opin. 2001;17(4):273-81.
- [1543] Pradalier A, Neukirch C, Dreyfus I, Devillier P. Desloratadine improves quality of life and symptom severity in patients with allergic rhinitis. Allergy. 2007 May 23.
- [1544] Berman BA. Perennial allergic rhinitis: clinical efficacy of a new antihistamine. J Allergy Clin Immunol. 1990;86(6 Pt 2):1004-8.
- [J545] Kowalski ML, Lewandowska A, Wozniak J, Makowska J, Jankowski A, DuBuske L. Inhibition of nasal polyp mast cell and eosinophil activation by desloratadine. Allergy. 2005 Jan;60(1):80-5.
- [1546] Reinartz SM, Overbeek SE, Kleinjan A, Drunen CM, Braunstahl GJ, Hoogsteden HC, et al. Desloratadine reduces systemic allergic inflammation following nasal provocation in allergic rhinitis and asthma patients. Allergy. 2005 Oct;60(10):1301-7.
- [1547] Simons FER, Simons R, Simons KJ. Pharmacokinetic optimisation of histamine H1-receptor antagonist therapy. Clin Pharmacokinet. 1991;21(5):372-93.
- [1548] Passalacqua G, Canonica GW, Bousquet J. Structure and classification of H1-antihistamines and overview of their activities. Clin Allergy Immunol. 2002;17:65-100.
- [1549] Simons FE. H1-antihistamines in children. Clin Allergy Immunol. 2002;17:437-64.
- [1550] Warner JO. A double-blinded, randomized, placebocontrolled trial of cetirizine in preventing the onset of asthma in children with atopic dermatitis: 18 months' treatment and 18 months' posttreatment follow-up. J Allergy Clin Immunol. 2001 Dec;108(6):929-37.
- [1551] Bousquet J, Van Cauwenberge P, Bachert C, Canonica GW, Demoly P, Durham SR, et al. Requirements for medications commonly used in the treatment of allergic rhinitis. European Academy of Allergy and Clinical Immunology (EAACI), Allergic Rhinitis and its Impact on Asthma (ARIA). Allergy. 2003 Mar;58(3):192-7.
  [1552] Plaut M, Valentine MD. Clinical practice. Allergic
- [1552] Plaut M, Valentine MD. Clinical practice. Allergic rhinitis. N Engl J Med. 2005 Nov 3;353(18):1934-44.
- [1553] Blaiss MS. Diphenhydramine vs desloratadine comparisons must consider risk-benefit ratio. Ann Allergy Asthma Immunol. 2006 Jul;97(1):121-2.
- [1554] Goldman DP, Joyce GF, Escarce JJ, Pace JE, Solomon MD, Laouri M, et al. Pharmacy benefits and the use of drugs by the chronically ill. Jama. 2004 May 19;291(19):2344-50.
- [1555] Odelram H, Bjorksten B, Klercker Ta, Rimas M, Kjellman NI, Blychert LO. Topical levocabastine versus sodium cromoglycate in allergic conjunctivitis. Allergy. 1989;44(6):432-6.

- [1556] Katelaris CH, Ciprandi G, Missotten L, Turner FD, Bertin D, Berdeaux G. A comparison of the efficacy and tolerability of olopatadine hydrochloride 0.1% ophthalmic solution and cromolyn sodium 2% ophthalmic solution in seasonal allergic conjunctivitis. Clin Ther. 2002 Oct;24(10):1561-75.
- [1557] Berger WE, White MV. Efficacy of azelastine nasal spray in patients with an unsatisfactory response to loratadine. Ann Allergy Asthma Immunol. 2003 Aug;91(2):205-11.
- [1558] Yanez A, Rodrigo GJ. Intranasal corticosteroids versus topical H1 receptor antagonists for the treatment of allergic rhinitis: a systematic review with meta-analysis. Ann Allergy Asthma Immunol. 2002 Nov;89(5):479-84.
- [1559] Bernstein DI, Levy AL, Hampel FC, Baidoo CA, Cook CK, Philpot EE, et al. Treatment with intranasal fluticasone propionate significantly improves ocular symptoms in patients with seasonal allergic rhinitis. Clin Exp Allergy. 2004 Jun;34(6):952-7.
- [1560] DeWester J, Philpot EE, Westlund RE, Cook CK, Rickard KA. The efficacy of intranasal fluticasone propionate in the relief of ocular symptoms associated with seasonal allergic rhinitis. Allergy Asthma Proc. 2003 Sep-Oct;24(5):331-7.
- [1561] Schenkel E. Features of mometasone furoate nasal spray and its utility in the management of allergic rhinitis. Expert Opin Pharmacother. 2003 Sep;4(9):1579-91.
- [1562] Bhatia S, Baroody FM, deTineo M, Naclerio RM. Increased nasal airflow with budesonide compared with desloratadine during the allergy season. Arch Otolaryngol Head Neck Surg. 2005 Mar;131(3):223-8.
- [1563] Berger WE, Nayak AS, Staudinger HW. Mometasone furoate improves congestion in patients with moderateto-severe seasonal allergic rhinitis. Ann Pharmacother. 2005 Dec;39(12):1984-9.
- [1564] Selner JC, Weber RW, Richmond GW, Stricker WE, Norton JD. Onset of action of aqueous beclomethasone dipropionate nasal spray in seasonal allergic rhinitis. Clin Ther. 1995;17(6):1099-109.
- [1565] Jen A, Baroody F, de Tineo M, Haney L, Blair C, Naclerio R. As-needed use of fluticasone propionate nasal spray reduces symptoms of seasonal allergic rhinitis. J Allergy Clin Immunol. 2000;105(4):732-8
- [1566] Dykewicz MS, Kaiser HB, Nathan RA, Goode-Sellers S, Cook CK, Witham LA, et al. Fluticasone propionate aqueous nasal spray improves nasal symptoms of seasonal allergic rhinitis when used as needed (pm). Ann Allergy Asthma Immunol. 2003 Jul;91(1):44-8.
- [1567] Brannan MD, Herron JM, Reidenberg P, Affrime MB. Lack of hypothalamic-pituitary-adrenat axis suppression with once-daily or twice-daily beclomethasone dipropionate aqueous nasal spray administered to patients with allergic rhinitis. Clin Ther. 1995;17(4):637-47.
- [1568] Sheth KK, Cook CK, Philpot EE, Prillaman BA, Witham LA, Faris MA, et al. Concurrent use of intranasal and orally inhaled fluticasone propionate does not affect hypothalamic-pituitary-adrenal-axis function. Allergy Asthma Proc. 2004 Mar-Apr;25(2):115-20.
- [1569] Wilson AM, Sims EJ, McFarlane LC, Lipworth BJ. Effects of intranasal corticosteroids on adrenal, bone, and blood markers of systemic activity in allergic rhinitis. J Allergy Clin Immunol. 1998;102(4 Pt 1):598-604.
- [1570] Kim KT, Rabinovitch N, Uryniak T, Simpson B, O'Dowd L, Casty F. Effect of budesonide aqueous nasal spray on hypothalamic-pituitary-adrenal axis function in children with allergic rhinitis. Ann Allergy Asthma Immunol. 2004 Jul;93(1):61-7.
  [1571] Fokkens WJ, Jogi R, Reinartz S, Sidorenko I,
- [1571] Fokkens WJ, Jogi R, Reinartz S, Sidorenko I, Sitkauskiene B, van Oene C, et al. Once daily fluticasone furoate nasal spray is effective in seasonal allergic rhinitis caused by grass pollen. Allergy. 2007 Sep;62(9):1078-84.
- [1572] Rosenblut A, Bardin PG, Muller B, Faris MA, Wu WW, Caldwell MF, et al. Long-term safety of fluticasone furoate nasal spray in adults and adolescents with

perennial allergic rhinitis. Allergy. 2007 Sep;62(9):1071-7

- [1573] Scadding GK. Intranasal steroid sprays in the treatment of rhinitis is one better than another? J Laryngol Otol. 2004 May;118(5):395-6; author reply 6.
- [1574] Blaiss MS, Benninger MS, Fromer L, Gross G, Mabry R, Mahr T, et al. Expanding choices in intranasal steroid therapy: summary of a roundtable meeting. Allergy Asthma Proc. 2006 May-Jun;27(3):254-64.
- [1575] Skoner D, Rachelefsky G, Meltzer E, Chervinsky P, Morris R, Seltzer J, et al. Detection of growth suppression in children during treatment with intranasal belcomethasone dipropionate. Pediatrics. 2000;105:e23.
- [1576] Allen DB, Meltzer EO, Lemanske RF, Jr., Philpot EE, Faris MA, Kral KM, et al. No growth suppression in children treated with the maximum recommended dose of fluticasone propionate aqueous nasal spray for one year. Allergy Asthma Proc. 2002 Nov-Dec;23(6):407-13.
- [1577] Schenkel EJ, Skoner, DP, Bronsky EA, Miller SD, Pearlman DS, Rooklin A, et al. Absence of growth retardation in children with perennial allergic rhinitis after one year of treatment with mometasone furoate aqueous nasal spray. Pediatrics. 2000 Feb;105(2):E22.
- [1578] Daley-Yates PT, Richards DH. Relationship between systemic corticosteroid exposure and growth velocity: development and validation. Clin Ther. 2004 Nov;26(11):1905-19.
- [1579] Fink RS, Pierre LN, Daley-Yates PT, Richards DH, Gibson A, Honour JW. Hypothalamic-pituitary-adrenal axis function after inhaled corticosteroids: unreliability of urinary free cortisol estimation. J Clin Endocrinol Metab. 2002 Oct:87(10):4541-6.
- [1580] First generic Flonase. FDA Consum. 2006 May-Jun;40(3):5.
- [1581] Bielory L, Blaiss M, Fineman SM, Ledford DK, Lieberman P, Simons FE, et al. Concerns about intranasal corticosteroids for over-the-counter use: position statement of the Joint Task Force for the American Academy of Allergy, Asthma and Immunology and the American College of Allergy, Asthma and Immunology. Ann Allergy Asthma Immunol. 2006 Apr;96(4):514-25.
- [1582] Nayak AS, Banov C, Corren J, Feinstein BK, Floreani A, Friedman BF, et al. Once-daily mometasone furoate dry powder inhaler in the treatment of patients with persistent asthma. Cochrane Database Syst Rev. 2000;2(4):417-24.
- [1583] van Adelsberg J, Philip G, Pedinoff AJ, Meltzer EO, Ratner PH, Menten J, et al. Montelukast improves symptoms of seasonal allergic rhinitis over a 4-week treatment period. Allergy. 2003 Dec;58(12):1268-76.
- [1584] van Adelsberg J, Philip G, LaForce CF, Weinstein SF, Menten J, Malice MP, et al. Randomized controlled trial evaluating the clinical benefit of montelukast for treating spring seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2003 Feb;90(2):214-22.
- [1585] Meltzer EO, Malmstrom K, Lu S, Prenner BM, Wei LX, Weinstein SF, et al. Concomitant montelukast and loratadine as treatment for seasonal allergic rhinitis: a randomized, placebo-controlled clinical trial. J Allergy Clin Immunol. 2000 May;105(5):917-22.
- [1586] Kurowski M, Kuna P, Gorski P. Montelukast plus cetirizine in the prophylactic treatment of seasonal allergic rhinitis: influence on clinical symptoms and nasal allergic inflammation. Allergy. 2004 Mar;59(3):280-8.
- [1587] Philip G, Williams-Herman D, Patel P, Weinstein SF, Alon A, Gilles L, et al. Efficacy of montelukast for treating perennial allergic rhinitis. Allergy Asthma Proc. 2007 May-Jun;28(3):296-304.
- [1588] Philip G, Nayak AS, Berger WE, Leynadier F, Vrijens F, Dass SB, et al. The effect of montelukast on rhinitis symptoms in patients with asthma and seasonal allergic rhinitis. Curr Med Res Opin. 2004 Oct;20(10):1549-58.
- [1589] Busse WW, Casale TB, Dykewicz MS, Meltzer EO, Bird SR, Hustad CM, et al. Efficacy of montelukast during the allergy season in patients with chronic asthma and

seasonal aeroallergen sensitivity. Ann Allergy Asthma Immunol. 2006 Jan;96(1):60-8.

- [1590] Wilson AM, O'Byrne PM, Parameswaran K. Leukotriene receptor antagonists for allergic rhinitis: a systematic review and meta-analysis. Am J Med. 2004 Mar 1;116(5):338-44.
- [1591] Rodrigo GJ, Yanez A. The role of antileukotriene therapy in seasonal allergic rhinitis: a systematic review of randomized trials. Ann Allergy Asthma Immunol. 2006 Jun;96(6):779-86.
- [1592] Nathan RA, Yancey SW, Waitkus-Edwards K, Prillaman BA, Stauffer JL, Philpot E, et al. Fluticasone propionate nasal spray is superior to montelukast for allergic rhinitis while neither affects overall asthma control. Chest. 2005 Oct;128(4):1910-20.
- [1593] Martin BG, Andrews CP, van Bavel JH, Hampel FC, Klein KC, Prillaman BA, et al. Comparison of fluticasone propionate aqueous nasal spray and oral montelukast for the treatment of seasonal allergic rhinitis symptoms. Ann Allergy Asthma Immunol. 2006 Jun;96(6):851-7.
- [1594] Di Lorenzo G, Pacor ML, Pellitteri ME, Morici G, Di Gregoli A, Lo Bianco C, et al. Randomized placebocontrolled trial comparing fluticasone aqueous nasal spray in mono-therapy, fluticasone plus cetirizine, fluticasone plus montelukast and cetirizine plus montelukast for seasonal allergic rhinitis. Clin Exp Allergy. 2004 Feb;34(2):259-67.
- [1595] Barnes ML, Ward JH, Fardon TC, Lipworth BJ. Effects of levocetirizine as add-on therapy to fluticasone in seasonal allergic rhinitis. Clin Exp Allergy. 2006 May;36(5):676-84.
- [1596] Saengpanich S, deTineo M, Naclerio RM, Baroody FM. Fluticasone nasal spray and the combination of loratadine and montelukast in seasonal allergic rhinitis. Arch Otolaryngol Head Neck Surg. 2003 May;129(5):557-62.
- [1597] Pullerits T, Praks L, Ristioja V, Lotvall J. Comparison of a nasal glucocorticoid, antileukotriene, and a combination of antileukotriene and antihistamine in the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 2002 Jun;109(6):949-55.
- [1598] Dockhorn R, Aaronson D, Bronsky E, Chervinsky P, Cohen R, Ehtessabian R, et al. Ipratropium bromide nasaf spray 0.03% and beclomethasone nasal spray alone and in combination for the treatment of rhinorrhea in perennial rhinitis. Ann Allergy Asthma Immunol. 1999;82(4):349-59.
- [1599] James IG, Campbell LM, Harrison JM, Fell PJ, Ellers-Lenz B, Petzold U. Comparison of the efficacy and tolerability of topically administered azelastine, sodium cromoglycate and placebo in the treatment of seasonal allergic conjunctivitis and rhino-conjunctivitis. Curr Med Res Opin. 2003;19(4):313-20.
- [160] Owen CG, Shah A, Henshaw K, Smeeth L, Sheikh A. Topical treatments for seasonal allergic conjunctivitis: systematic review and meta-analysis of efficacy and effectiveness. Br J Gen Pract. 2004 Jun;54(503):451-6.
- [1601] Melamed J, Schwartz RH, Blumenthal MN, Zeitz HJ. Efficacy and safety of nedocromil sodium 2% ophthalmic solution b.i.d. in the treatment of ragweed seasonal allergic conjunctivitis. Allergy Asthma Proc. 2000 Jul-Aug;21(4):235-9.
- [1602] Johnson DA, Hricik JG. The pharmacology of alphaadrenergic decongestants. Pharmacotherapy. 1993;13(6 Pt 2):110S-5S, discussion 43S-46S.
- [1603] Johannsseh V, Maune S, Werner JA, Rudert H, Ziegler A. Alpha 1-receptors at pre-capillary resistance vessels of the human nasal mucosa. Rhinology. 1997;35(4):161-5.
- [1604] Fradis M, Podoshin L, Gertner R. Treatment of perennial allergic rhinitis by sodium cromoglycate plus 0.025 per cent xylometazoline (a double-blind study). J Laryngol Otol. 1987 Jul;101(7):666-72.
- [1605] Barnes ML, Biallosterski BT, Gray RD, Fardon TC, Lipworth BJ. Decongestant effects of nasal xylometazoline and mometasone furoate in persistent allergic rhinitis. Rhinology. 2005 Dec;43(4):291-5.

- [1606] Castellano F, Mautone G. Decongestant activity of a new formulation of xylometazoline nasal spray: a doubleblind, randomized versus placebo and reference drugs controlled, dose-effect study. Drugs Exp Clin Res. 2002;28(1):27-35.
- [1607] Graf P, Hallen H, Juto JE. Four-week use of oxymetazoline nasal spray (Nezeril) once daily at night induces rebound swelling and nasal hyperreactivity. Acta Otolaryngol. 1995;115(1):71-5.
- [1608] Graf P, Hallen H. Effect on the nasal mucosa of longterm treatment with oxymetazoline, benzalkonium chloride, and placebo nasal sprays. Laryngoscope. 1996;106(5 Pt 1):605-9.
- [1609] Broms P, Malm L. Oral vasoconstrictors in perennial non-allergic rhinitis. Allergy. 1982;37(2):67-74.
  [1610] Kanfer I, Dowse R, Vuma V, Pharmacokinetics of oral
- [1610] Kanfer I, Dowse R, Vuma V, Pharmacokinetics of oral decongestants. Pharmacotherapy. 1993;13(6 Pt 2):116S-28S; discussion 43S-46S
- [1611] Simons FE, Gu 📿 Watson WT, Simons KJ. Pharmacokinetics of the orally administered pseudoephedrine decongestants and phenylpropanolamine in children. J Pediatr. 1996;129(5):729-34.
- [1612] Bertrand B, Jamart J, Marchal JL, Arendt C. Cetirizine and pseudoephedrine retard alone and in combination in the treatment of perennial allergic rhinitis: a double-blind multicentre study. Rhinology. 1996;34(2):91-6.
- [1613] Sussman GL, Mason J, Compton D, Stewart J, Ricard N. The efficacy and safety of fexofenadine HCl and pseudoephedrine, alone and in combination, in seasonal allergic rhinitis. J Allergy Clin Immunol. 1999;104(1):100-6.
- [1614] Storms WW, Bodman SF, Nathan RA, Chervinsky P, Banov CH, Dockhorn RJ, et al. SCH 434: a new antihistamine/decongestant for seasonal allergic rhinitis. J Allergy Clin Immunol. 1989;83(6):1083-90.
- [1615] Moinuddin R, deTineo M, Maleckar B, Naclerio RM, Baroody FM. Comparison of the combinations of fexofenadine-pseudoephedrine and loratadinemontelukast in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2004 Jan;92(1):73-9.
- [1616] Nomeir AA, Mojaverian P, Kosoglou T, Affrime MB, Nezamis J, Rodwanski E, et al. Influence of food on the oral bioavailability of loratadine and pseudoephedrine from extended-release tablets in healthy volunteers. J Clin Pharmacol. 1996;36(10):923-30.
- [1617] Meltzer EO, Berman GD, Corren J, Pedinoff AJ, Doyle G, Waksman JA, et al. Addition of ibuprofen to pseudoephedrine and chlorpheniramine in the treatment of seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2004 Nov;93(5):452-9.
- [1618] Mygind N, Borum P. Intranasal ipratropium: literature abstracts and comments. Rhinol Suppl. 1989;9:37-44.
- [1619] Borum P, Mygind N, Schultz Larsen F. Intranasal ipratropium: a new treatment for perennial rhinitis. Clin Otolaryngol. 1979;4(6):407-11.
- [1620] Wagenmann M, Naclerio RM. Complications of sinusitis. J Allergy Clin Immunol. 1992;90(3 Pt 2):552-4.
- [1621] Borum P, Gronborg H, Mygind N. Seasonal allergic rhinitis and depot injection of a corticosteroid. Evaluation of the efficacy of medication early and late in the season based on detailed symptom recording. Allergy. 1987;42(1):26-32.
- [1622] Bousquet J. Primum non nocere. Prim Care Respir J. 2005 Jun;14(3):122-3.
- [1623] Yaylali V, Demirlenk I, Tatlipinar S, Ozbay D, Esme A, Yildirim C, et al. Comparative study of 0.1% olopatadine hydrochloride and 0.5% ketorolac tromethamine in the treatment of seasonal allergic conjunctivitis. Acta Ophthalmol Scand. 2003 Aug;81(4):378-82.
- [1624] Noon L. Prophylactic inoculation against hay fever. Lancet. 1911;i:1572-3.
- [1625] Alvarez-Cuesta E, Bousquet J, Canonica GW, Durham SR, Malling HJ, Valovirta E. Standards for practical allergen-specific immunotherapy. Allergy. 2006;61 Suppl 82:1-20.

- [1626] Bousquet J, Demoly P. Specific immunotherapy--an optimistic future. Allergy. 2006 Oct;61(10):1155-8.
- [1627] The current status of allergen immunotherapy (hyposensitisation). Report of a WHO/IUIS working group. Allergy. 1989;44(6):369-79.
- [1628] Malling H. Immunotherapy. Position Paper of the EAACI. Allergy. 1988;43, suppl 6.
- [1629] Malling H, Weeke B. Immunotherapy. Position Paper of the European Academy of Allergy and Clinical Immunology. Allergy. 1993;48, suppl 14:9-35.
- [1630] Malling HJ, Abreu-Nogueira J, Alvarez-Cuesta E, Bjorksten B, Bousquet J, Caillot D, et al. Local immunotherapy. Allergy. 1998;53(10):933-44.
- [1631] International Consensus Report on Diagnosis and Management of Asthma. International Asthma Management Project. Allergy. 1992;47(13 Suppl):1-61.
- [1632] Frew AJ. Injection immunotherapy. British Society for Allergy and Clinical Immunology Working Party. Bmj. 1993;307(6909):919-23.
- [1633] Nicklas R, Bernstein I, Blessing-Moore J, Fireman S, Gutman A, Lee R, et al. Practice parameters for allergen immunotherapy. J Allergy Clin Immunol. 1996;6:1001-11.
- [1634] Canonica GW, Baena-Cagnani CE, Bousquet J, Bousquet PJ, Lockey RF, Malling HJ, et al. Recommendations for standardization of clinical trials with Allergen Specific Immunotherapy for respiratory allergy. A statement of a World Allergy Organization (WAO) taskforce. Allergy. 2007 Mar;62(3):317-24.
- [1635] Allergen products (Producta allergenica). European Pharmacopeia. 1997;1063-8.
- [1636] Nordic Council on Medicines. Registration of allergenic preparations. Nordic Guidelines. 2<sup>nd</sup> ed. Uppsala: NLN Publications, No. 23, 1989:1-34. 1989.
- [1637] Turkeltaub PC, Rastogi SC, Baer H, Anderson MC, Norman PS. A standardized quantitative skin-test assay of allergen potency and stability: studies on the allergen dose-response curve and effect of wheal, erythema, and patient selection on assay results. J Allergy Clin Immunol. 1982;70(5):343-52.
- [1638] Spangfort MD, Larsen JN. Standardization of allergen specific immunotherapy vaccines. Immunol Allergy Clin North Am. 2006 May;26(2):191-206, v-vi.
- [1639] Turkeltaub PC. Assignment of bioequivalent allergy units based on biological standardization methods. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M. 1988;82:19-40.
- [1640] Dreborg S, Frew A. Allergen standardization and skin tests. EAACI Position Paper. Allergy. 1993;48, suppl 14.
- [1641] Nelson HS, Ikle D, Buchmeier A. Studies of allergen extract stability: the effects of dilution and mixing. J Allergy Clin Immunol. 1996;98(2):382-8.
- [1642] Abramson M, Puy R, Weiner J. Immunotherapy in asthma: an updated systematic review. Allergy. 1999;54(10):1022-41.
- [1643] Abramson MJ, Puy RM, Weiner JM. Allergen immunotherapy for asthma. Cochrane Database Syst Rev. 2003(4):CD001186.
- [1644] Calderon M, Alves B, Jacobson M, Hurwitz B, Sheikh A, Durham S. Allergen injection immunotherapy for seasonal allergic rhinitis. Cochrane Database Syst Rev. 2007(1):CD001936.
- [1645] Hirsch SR, Kalbfleisch JH, Golbert TM, Josephson BM, McConnell LH, Scanlon R, et al. Rinkel injection therapy: a multicenter controlled study. J Allergy Clin Immunol, 1981;68(2):133-55.
- [1646] Hirsch SR, Kalbfleisch JH, Cohen SH. Comparison of Rinkel injection therapy with standard immunotherapy. J Allergy Clin Immunol. 1982;70(3):183-90.
- [1647] Van-Metre TE, Adkinson N, Jr., Amodio FJ, Lichtenstein LM, Mardiney MR, Norman PS, et al. A comparative study of the effectiveness of the Rinkel method and the current standard method of immunotherapy for ragweed pollen hay fever. J Allergy Clin Immunol. 1980;66(6):500-13.

- [1648] Creticos PS, Van-Metre TE, Mardiney MR, Rosenberg GL, Norman PS, Adkinson N, Jr. . Dose response of IgE and IgG antibodies during ragweed immunotherapy. J Allergy Clin Immunol. 1984;73(1 Pt 1):94-104.
- [1649] Bousquet J, Demoly P, Michel FB. Specific immunotherapy in rhinitis and asthma. Ann Allergy Asthma Immunol. 2001;87(1 Suppl 1):38-42.
- [1650] Winther L, Malling HJ, Mosbech H. Allergen-specific immunotherapy in birch- and grass-pollen-allergic rhinitis. II. Side-effects. Allergy. 2000;55(9):827-35.
- [1651] Winther L, Malling HJ, Moseholm L, Mosbech H. Allergen-specific immunotherapy in birch- and grasspollen-allergic rhinitis. I. Efficacy estimated by a model reducing the bias of annual differences in pollen counts. Allergy. 2000;55(9):818-26.
- [1652] Leynadier F, Banoun L, Dollois B, Terrier P, Epstein M, Guinnepain MT, et al. Immunotherapy with a calcium phosphate-adsorbed five grass-pollen extract in seasonal rhinoconjunctivitis: a double-blind, placebo-controlled study. Clin Exp Allergy. 2001;31(7):988-96.
- [1653] Corrigan CJ, Kettner J, Doemer C, Cromwell O, Narkus A. Efficacy and safety of preseasonal-specific immunotherapy with an aluminium-adsorbed six-grass pollen allergoid. Allergy. 2005 Jun;60(6):801-7.
- [1654] Alvarez-Cuesta E, Aragoneses-Gilsanz E, Martin-Garcia C, Berges-Gimeno P, Gonzalez-Mancebo E, Cuesta-Herranz J. Immunotherapy with depigmented glutaraldehyde-polymerized extracts: changes in quality of life. Clin Exp Allergy. 2005 May;35(5):572-8.
- [1655] Roberts G, Hurley C, Turcanu V, Lack G. Grass pollen immunotherapy as an effective therapy for childhood seasonal allergic asthma. J Allergy Clin Immunol. 2006 Feb;117(2):263-8.
- [1656] Arvidsson MB, Lowhagen O, Rak S. Effect of 2-year placebo-controlled immunotherapy on airway symptoms and medication in patients with birch pollen allergy. J Allergy Clin Immunol. 2002 May;109(5):777-83.
- [1657] Rak S, Heinrich C, Jacobsen L, Scheynius A, Venge P. A double-blinded, comparative study of the effects of short preseason specific immunotherapy and topical steroids in patients with allergic rhinoconjunctivitis and asthma. J Allergy Clin Immunol. 2001 Dec;108(6):921-8.
- [1658] Rak S, Heinrich C, Scheynius A. Comparison of nasal immunohistology in patients with seasonal rhinoconjunctivitis treated with topical steroids or specific allergen immunotherapy. Allergy. 2005 May;60(5):643-9.
- [1659] Bodtger U, Poulsen LK, Jacobi HH, Malling HJ. The safety and efficacy of subcutaneous birch pollen immunotherapy - a one-year, randomised, double-blind, placebo-controlled study. Allergy. 2002 Apr;57(4):297-305.
- [1660] Mirone C, Albert F, Tosi A, Mocchetti F, Mosca S, Giorgino M, et al. Efficacy and safety of subcutaneous immunotherapy with a biologically standardized extract of Ambrosia artemisiifolia pollen: a double-blind, placebo-controlled study. Clin Exp Allergy. 2004 Sep;34(9):1408-14.
- [1661] Colas C, Monzon S, Venturini M, Lezaun A. Doubleblind, placebo-controlled study with a modified therapeutic vaccine of Salsola kali (Russian thistle) administered through use of a cluster schedule. J Allergy Clin Immunol. 2006 Apr;117(4):810-6.
- [1662] Polosa R, Li Gotti F, Mangano G, Mastruzzo C, Pistorio MP, Crimi N. Monitoring of seasonal variability in bronchial hyper-responsiveness and sputum cell counts in non-asthmatic subjects with rhinitis and effect of specific immunotherapy. Clin Exp Allergy. 2003 Jul;33(7):873-81
- [1663] Ferrer M, Burches E, Pelaez A, Munoz A, Hernandez D, Basomba A, et al. Double-blind, placebo-controlled study of immunotherapy with Parietaria judaica: clinical efficacy and tolerance. J Investig Allergol Clin Immunol. 2005;15(4):283-92.
- [1664] Grembiale RD, Camporota L, Naty S, Tranfa CM, Djukanovic R, Marsico SA. Effects of specific

immunotherapy in allergic rhinitic individuals with bronchial hyperresponsiveness. Am J Respir Crit Care Med. 2000 Dec;162(6):2048-52.

- [1665] Pichler CE, Helbling A, Pichler WJ. Three years of specific immunotherapy with house-dust-mite extracts in patients with rhinitis and asthma: significant improvement of allergen-specific parameters and of nonspecific bronchial hyperreactivity. Allergy. 2001;56(4):301-6.
- [1666] Pifferi M, Baldini G, Marrazzini G, Baldini M, Ragazzo V, Pietrobelli A, et al. Benefits of immunotherapy with a standardized Dermatophagoides pteronyssinus extract in asthmatic children: a three-year prospective study. Allergy. 2002 Sep;57(9):785-90.
- [1667] Varney VA, Tabbah K, Mavroleon G, Frew AJ. Usefulness of specific immunotherapy in patients with severe perennial allergic rhinitis induced by house dust mite: a double-blind, randomized, placebo-controlled trial. Clin Exp Allergy. 2003 Aug;33(8):1076-82.
- [1668] Maestrelli P, Zanolla L, Pozzan M, Fabbri LM. Effect of specific immunotherapy added to pharmacologic treatment and allergen avoidance in asthmatic patients allergic to house dust mite. J Allergy Clin Immunol. 2004 Apr;113(4):643-9.
- [1669] Ameal A, Vega-Chicote JM, Fernandez S, Miranda A, Carmona MJ, Rondon MC, et al. Double-blind and placebo-controlled study to assess efficacy and safety of a modified allergen extract of Dermatophagoides pteronyssinus in allergic asthma. Allergy. 2005 Sep;60(9):1178-83.
- [1670] Nanda A, O'Connor M, Anand M, Dreskin SC, Zhang L, Hines B, et al. Dose dependence and time course of the immunologic response to administration of standardized cat allergen extract. J Allergy Clin Immunol. 2004 Dec;114(6):1339-44.
- [1671] Jutel M, Jaeger L, Suck R, Meyer H, Fiebig H, Cromwell O. Allergen-specific immunotherapy with recombinant grass pollen allergens. J Allergy Clin Immunol. 2005 Sep;116(3):608-13.
- [1672] Des-Roches A, paradis L, Knani J, Hejjaoui A, Dhivert H, Chanez P, et al. Immunotherapy with a standardized Dermatophagoides pteronyssinus extract. V- Duration of efficacy of immunotherapy after its cessation. Allergy, 1996;51:430-3.
- [1673] Durham SR, Walker SM, Varga EM, Jacobson MR, O'Brien F, Noble W, et al. Long-term clinical efficacy of grass-pollen immunotherapy [see comments]. N Engl J Med. 1999;341(7):468-75.
- [1674] Cox L, Cohn JR. Duration of allergen immunotherapy in respiratory allergy: when is enough, enough? Ann Allergy Asthma Immunol. 2007 May;98(5):416-26.
- [1675] Patel P, Salapatek AM. Pollinex Quattro: a novel and well-tolerated, ultra short-course allergy vaccine. Expert Rev Vaccines. 2006 Oct;5(5):617-29.
- [1676] McCormack PL, Wagstaff AJ. Ultra-short-course seasonal allergy vaccine (Pollinex Quattro). Drugs. 2006;66(7):931-8.
- [1677] Creticos PS, Schroeder JT, Hamilton RG, Balcer-Whaley SL, Khattignavong AP, Lindblad R, et al. Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N Engl J Med. 2006 Oct 5;355(14):1445-55.
- [1678] Bousquet J, Michel FB. Safety considerations in assessing the role of immunotherapy in allergic disorders. Drug Saf. 1994;10(1):5-17.
- [1679] Nielsen L, Johnsen C, Mosbech H, Poulsen L, Malling H. Antihistamine premedication in specific cluster immunotherapy: a double-blind, palcebo-controlled study. J Allergy Clin Immunol. 1996;97:1207-13.
- [1680] Omnes LF, Bousquet J, Scheinmann P, Neukirch F, Jasso-Mosqueda G, Chicoye A, et al. Pharmacoeconomic assessment of specific immunotherapy versus current symptomatic treatment for allergic rhinitis and asthma in France. Allerg Immunol (Paris). 2007 May;39(5):148-56.
- [1681] Grammer LC, Shaughnessy MA, Suszko IM, Shaughnessy JJ, Patterson R. Persistence of efficacy after

a brief course of polymerized ragweed allergen: a controlled study. J Allergy Clin Immunol. 1984;73(4):484-9.

- [1682] Mosbech H, Osterballe O. Does the effect of immunotherapy last after termination of treatment? Follow-up study in patients with grass pollen rhinitis. Allergy. 1988;43(7):523-9.
- [1683] Naclerio RM, Proud D, Moylan B, Balcer S, Freidhoff L, Kagey-Sobotka A, et al. A double-blind study of the discontinuation of ragweed immunotherapy. J Allergy Clin Immunol. 1997;100(3):293-300.
- [1684] Pajno GB, Barberio G, De Luca F, Morabito L, Parmiani S. Prevention of new sensitizations in asthmatic children monosensitized to house dust mite by specific immunotherapy. A six-year follow-up study. Clin Exp Allergy. 2001 Sep;31(9):1392-7.
- [1685] Eng PA, Borer-Reinhold M, Heijnen IA, Gnehm HP. Twelve-year follow-up after discontinuation of preseasonal grass pollen immunotherapy in childhood. Allergy. 2006 Feb 61(2):198-201.
  [1686] Inal A, Altintas DU, Yilmaz M, Karakoc GB, Kendirli
- [1686] Inal A, Altintas DU, Yilmaz M, Karakoc GB, Kendirli SG, Sertdemir Y. Prevention of new sensitizations by specific immunotherapy in children with rhinitis and/or asthma monosensitized to house dust mite. J Investig Allergol Clin Immunol. 2007;17(2):85-91.
- [1687] Des-Roches A, Paradis L, Ménardo J-L, Bouges S, Daurès J-P, Bousquet J. Immunotherapy with a standardized Dermatophagoides pteronyssinus extract. VI Specific immunotherapy prevents the onset of new sensitizations in children. J Allergy Clin Immunol. 1997;99:450-3.
- [1688] Moller C, Dreborg S, Ferdousi HA, Halken S, Host A, Jacobsen L, et al. Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAT-study). J Allergy Clin Immunol. 2002 Feb;109(2):251-6.
- [1689] Niggemann B, Jacobsen L, Dreborg S, Ferdousi HA, Halken S, Host A, et al. Five-year follow-up on the PAT study: specific immunotherapy and long-term prevention of asthma in children. Allergy. 2006 Jul;61(7):855-9.
- [1690] Passalacqua G, Lombardi C, Canonica GW. Sublingual immunotherapy: an update. Curr Opin Allergy Clin Immunol. 2004 Feb;4(1):31-6.
- [1691] Didier A. Future developments in sublingual immunotherapy. Allergy. 2006;61 Suppl 81:29-31.
- [1692] Canonica GW, Passalacqua G. Sublingual immunotherapy in the treatment of adult allergic rhinitis patients. Allergy. 2006;61 Suppl 81:20-3.
- [1693] Ross RN, Nelson HS, Finegold I. Effectiveness of specific immunotherapy in the treatment of allergic rhinitis: an analysis of randomized, prospective, singleor double-blind, placebo-controlled studies. Clin Ther. 2000 Mar;22(3):342-50.
- [1694] Ross RN, Nelson HS, Finegold I. Effectiveness of specific immunotherapy in the treatment of asthma: a meta-analysis of prospective, randomized, double-blind, placebo-controlled studies. Clin Ther. 2000 Mar;22(3):329-41.
- [1695] Nelson HS. Advances in upper airway diseases and allergen immunotherapy. J Allergy Clin Immunol. 2003 Mar;111(3 Suppl):S793-8.
- [1696] Frew AJ. 25. Immunotherapy of allergic disease. J Allergy Clin Immunol. 2003 Feb;111(2 Suppl):S712-9.
- [1697] Cox LS, Linnemann DL, Nolte H, Weldon D, Finegold I, Nelson HS. Sublingual immunotherapy: a comprehensive review. J Allergy Clin Immunol. 2006 May;117(5):1021-35.
- [1698] Wilson DR, Lima MT, Durham SR. Sublingual immunotherapy for allergic rhinitis: systematic review and meta-analysis. Allergy. 2005 Jan;60(1):4-12.
- [1699] Wilson DR, Torres LI, Durham SR. Sublingual immunotherapy for allergic rhinitis. Allergy. 2005;THIS VOLUME.
- [1700] Marogna M, Spadolini I, Massolo A, Canonica GW, Passalacqua G. Randomized controlled open study of sublingual immunotherapy for respiratory allergy in real-

life: clinical efficacy and more. Allergy. 2004 Nov;59(11):1205-10.

- [1701] Marogna M, Spadolini I, Massolo A, Canonica GW, Passalacqua G. Clinical, functional, and immunologic effects of sublingual immunotherapy in birch pollinosis: a 3-year randomized controlled study. J Allergy Clin Immunol. 2005 Jun;115(6):1184-8.
- [1702] Tonnel AB, Scherpereel A, Douay B, Mellin B, Leprince D, Goldstein N, et al. Allergic rhinitis due to house dust mites: evaluation of the efficacy of specific sublingual immunotherapy. Allergy. 2004 May;59(5):491-7.
- [1703] Bufe A, Ziegler-Kirbach E, Stoeckmann E, Heidemann P, Gehlhar K, Holland-Letz T, et al. Efficacy of sublingual swallow immunotherapy in children with severe grass pollen allergic symptoms: a double-blind placebo-controlled study. Allergy. 2004 May;59(5):498-504.
- [1704] Sopo SM, Macchiaiolo M, Zorzi G, Tripodi S. Sublingual immunotherapy in asthma and rhinoconjunctivitis; systematic review of paediatric literature. Arch Dis Child. 2004 Jul;89(7):620-4.
- [1705] Pajno GB, Vita D, Parmiani S, Caminiti L, La Grutta S, Barberio G. Impact of sublingual immunotherapy on seasonal asthma and skin reactivity in children allergic to Parietaria pollen treated with inhaled fluticasone propionate. Clin Exp Allergy. 2003 Dec;33(12):1641-7.
- [1706] Smith H, White P, Annila I, Poole J, Andre C, Frew A. Randomized controlled trial of high-dose sublingual immunotherapy to treat seasonal allergic rhinitis. J Allergy Clin Immunol. 2004 Oct;114(4):831-7.
- [1707] Rolinck-Werninghaus C, Wolf H, Liebke C, Baars JC, Lange J, Kopp MV, et al. A prospective, randomized, double-blind, placebo-controlled multi-centre study on the efficacy and safety of sublingual immunotherapy (SLIT) in children with seasonal allergic rhinoconjunctivitis to grass pollen. Allergy. 2004 Dec;59(12):1285-93.
- [1708] Bowen T, Greenbaum J, Charbonneau Y, Hebert J, Filderman R, Sussman G, et al. Canadian trial of sublingual swallow immunotherapy for ragweed rhinoconjunctivitis. Ann Allergy Asthma Immunol. 2004 Nov;93(5):425-30.
- [1709] Dahl R, Stender A, Rak S. Specific immunotherapy with SQ standardized grass allergen tablets in asthmatics with rhinoconjunctivitis. Allergy. 2006 Feb;61(2):185-90.
- [1710] Passalacqua G, Pasquali M, Ariano R, Lombardi C, Giardini A, Baiardini I, et al. Randomized double-blind controlled study with sublingual carbamylated allergoid immunotherapy in mild rhinitis due to mites. Allergy. 2006 Jul;61(7):849-54.
- [1711] Durham SR, Riis B. Grass allergen tablet immunotherapy relieves individual seasonal eye and nasal symptoms, including nasal blockage. Allergy. 2007 Aug;62(8):954-7
- [1712] Dahl R, Kapp A, Colombo G, de Monchy JG, Rak S, Emminger W, et al. Efficacy and safety of sublingual immunotherapy with grass allergen tablets for seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2006 Aug;118(2):434.40.
- [1713] Rak S, Yang WH, Pedersen MR, Durham SR. Once-daily sublingual allergen specific immunotherapy improves quality of life in patients with grass pollen-induced allergic rhinoconjunctivitis: a double-blind, randomised study. Qual Life Res. 2007 Mar;16(2):191-201.
- [1714] Roder E, Berger MY, Hop WC, Bernsen RM, de Groot H, Gerth van Wijk R. Sublingual immunotherapy with grass pollen is not effective in symptomatic youngsters in primary care. J Allergy Clin Immunol. 2007 Apr;119(4):892-8.
- [1715] Pham-Thi N, Scheinmann P, Fadel R, Combebias A, Andre C. Assessment of sublingual immunotherapy efficacy in children with house dust mite-induced allergic asthma optimally controlled by pharmacologic treatment and mite-avoidance measures. Pediatr Allergy Immunol. 2007 Feb;18(1):47-57.
- [1716] Penagos M Compalati E, Tarantini F, Baena-Cagnani R,

Huerta J, Passalacqua G, Canonica GW. Efficacy of sublingual immunotherapy in the treatment of allergic rhinitis in pediatric patients 3 to 18 years of age: a metaanalysis of randomized, placebo-controlled, double-blind trials. Ann Allergy Asthma Immunol. 2006 Aug;97(2):141-8.

- [1717] Calamita Z, Saconato H, Pela AB, Atallah AN. Efficacy of sublingual immunotherapy in asthma: systematic review of randomized-clinical trials using the Cochrane Collaboration method. Allergy. 2006 Oct;61(10):1162-72.
- [1718] Canonica GW, Passalacqua G. Noninjection routes for immunotherapy. J Allergy Clin Immunol. 2003 Mar;111(3):437-48; quiz 49.
- [1719] Andre C, Vatrinet C, Galvain S, Carat F, Sicard H. Safety of sublingual-swallow immunotherapy in children and adults. Int Arch Allergy Immunol. 2000;121(3):229-34
- [1720] Pajno GB, Peroni DG, Vita D, Pietrobelli A, Parmiani S, Boner AL. Safety of sublingual immunotherapy in children with asthma. Paediatr Drugs. 2003;5(11):777-81.
- [1721] Agostinis F, Tellarini L, Canonica GW, Falagiani P, Passalacqua G. Safety of sublingual immunotherapy with a monomeric allergoid in very young children. Allergy. 2005 Jan;60(1):133.
- [1722] Pham-Thi, N, de Blic, J, Scheinmann P. Sublingual immunotherapy in the treatment of children. Allergy. 2006;61 Suppl 81:7-10.
- [1723] Kleine-Tebbe J, Ribel M, Herold DA. Safety of a SQstandardised grass allergen tablet for sublingual immunotherapy: a randomized, placebo-controlled trial. Allergy. 2006 Feb;61(2):181-4.
- Di Rienzo V, Pagani A, Parmiani S, Passalacqua G, Canonica GW. Post-marketing surveillance study on the safety of sublingual immunotherapy in pediatric patients. Allergy. 1999;54(10):1110-3.
- [1725] Dunsky EH, Goldstein MF, Dvorin DJ, Belecanech GA. Anaphylaxis to sublingual immunotherapy. Allergy. 2006 Oct;61(10):1235.
- [1726] Antico A, Pagani M, Crema A. Anaphylaxis by latex sublingual immunotherapy. Allergy. 2006 Oct;61(10):1236-7.
- [1727] Mungan D, Misirligil Z, Gurbuz L. Comparison of the efficacy of subcutaneous and sublingual immunotherapy in mite-sensitive patients with rhinitis and asthma--a placebo controlled study. Ann Allergy Asthma Immunol. 1999;82(5):485-90.
- [1728] Bernardis P, Agnoletto M, Puccinelli P, Parmiani S, Pozzan M. Injective versus sublingual immunotherapy in Alternaria tenuis allergic patients. J Investig Allergol Clin Immunol. 1996 Jan-Feb;6(1):55-62.
- [1729] Khinchi MS, Poulsen LK, Carat F, Andre C, Hansen AB, Malling HJ. Clinical efficacy of sublingual and subcutaneous birch pollen allergen-specific immunotherapy: a randomized, placebo-controlled, double-blind, double-dummy study. Allergy. 2004 Jan;59(1):45-53.
- [1730] Di Rienzo V, Marcucci F, Puccinelli P, Parmiani S, Frati F, Sensi L, et al. Long-lasting effect of sublingual immunotherapy in children with asthma due to house dust mite: a 10-year prospective study. Clin Exp Allergy. 2003 Feb;33(2):206-10.
- [1731] Novembre E, Galli E, Landi F, Caffarelli C, Pifferi M, De Marco E, et al. Coseasonal sublingual immunotherapy reduces the development of asthma in children with allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2004 Oct;114(4):851-7.
- [1732] Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol. 2005 Mar;115(3):459-65.
- [1733] Kaliner MA. Omalizumab and the treatment of allergic rhinitis. Curr Allergy Asthma Rep. 2004 May;4(3):237-44.

- [1734] Chervinsky P, Casale T, Townley R, Tripathy I, Hedgecock S, Fowler-Taylor A, et al. Omalizumab, an anti-IgE antibody, in the treatment of adults and adolescents with perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2003 Aug;91(2):160-7.
- [1735] Plewako H, Arvidsson M, Petruson K, Oancea I, Holmberg K, Adelroth E, et al. The effect of omalizumab on nasal allergic inflammation. J Allergy Clin Immunol. 2002 Jul;110(1):68-71.
- [1736] Bez C, Schubert R, Kopp M, Ersfeld Y, Rosewich M, Kuehr J, et al. Effect of anti-immunoglobulin E on nasal inflammation in patients with seasonal allergic rhinoconjunctivitis. Clin Exp Allergy. 2004 Jul;34(7):1079-85.
- [1737] Beck LA, Marcotte GV, MacGlashan D, Togias A, Saini S. Omalizumab-induced reductions in mast cell Fce psilon RI expression and function. J Allergy Clin Immunol. 2004 Sep;114(3):527-30.
- [1738] Hanf G, Noga O, O'Connor A, Kunkel G. Omalizumab inhibits allergen challenge-induced nasal response. Eur Respir J. 2004 Mar;23(3):414-8.
- [1739] Lin H, Boesel KM, Griffith DT, Prussin C, Foster B, Romero FA, et al. Omalizumab rapidly decreases nasal allergic response and FcepsilonRI on basophils. J Allergy Clin Immunol. 2004 Feb;113(2):297-302.
- [1740] Price K, Hamilton R. Anaphylactoid reactions in two patients after omalizumab administration after successful long-term therapy. Allergy Asthma Proc. 2007;28(5):313-9.
- [1741] Information for health care professionals. Omalizumab (marketed as Xolair). July 2, 2007. <u>http://www.fda.gov/Cder/drug/InfoSheets/HCP/omalizu</u> <u>mabHCP.htm.</u> 2007.
- [1742] Brown R, Turk F, Dale P, Bousquet J. Cost-effectiveness of omalizumab in patients with severe persistent allergic asthma. Allergy. 2007 Feb;62(2):149-53.
- [1743] Oba Y, Salzman GA. Cost-effectiveness analysis of omalizumab in adults and adolescents with moderate-tosevere allergic asthma. J Allergy Clin Immunol. 2004 Aug;114(2):265-9.
- [1744] Casale TB, Busse WW, Kline JN, Ballas ZK, Moss MH, Townley RG, et al. Omalizumab pretreatment decreases acute reactions after rush immunotherapy for ragweedinduced seasonal allergic rhinitis. J Allergy Clin Immunol. 2006 Jan;117(1):134-40.
- [1745] Kuehr J, Brauburger J, Zielen S, Schauer U, Kamin W, Von Berg A, et al. Efficacy of combination treatment with anti-IgE plus specific immunotherapy in polysensitized children and adolescents with seasonal allergic rhinitis. J Allergy Clin Immunol. 2002 Feb;109(2):274-80.
- [1746] Rolinck-Werninghaus C, Hamelmann E, Keil T, Kulig M, Koetz K, Gerstner B, et al. The co-seasonal application of anti-IgE after preseasonal specific immunotherapy decreases ocular and nasal symptom scores and rescue medication use in grass pollen allergic children. Allergy. 2004 Sep;59(9):973-9.
- [1747] Klunker S, Saggar LR, Seyfert-Margolis V, Asare AL, Casale TB, Durham SR, et al. Combination treatment with omalizumab and rush immunotherapy for ragweedinduced allergic thimtis: Inhibition of IgE-facilitated allergen binding. J Allergy Clin Immunol. 2007 Jul 11.
  [1748] Linde K, Jonas WB, Melchart D, Willich S. The
- [1748] Linde K, Jonas WB, Melchart D, Willich S. The methodological quality of randomized controlled trials of homeopathy, herbal medicines and acupuncture. Int J Epidemiol. 2001 Jun;30(3):526-31.
- [1749] Linde K, Hondras M, Vickers A, Riet Gt G, Melchart D. Systematic reviews of complementary therapies - an annotated bibliography. Part 3: Homeopathy. BMC Complement Altern Med. 2001;1(1):4.
- [1750] Linde K, ter Riet G, Hondras M, Vickers A, Saller R, Melchart D. Systematic reviews of complementary therapies - an annotated bibliography. Part 2: Herbal medicine. BMC Complement Altern Med. 2001;1(1):5.
- [1751] Linde K, Vickers A, Hondras M, ter Riet G, Thormahlen J, Berman B, et al. Systematic reviews of complementary

therapies - an annotated bibliography. Part 1: Acupuncture. BMC Complement Altern Med. 2001;1(1):3.

- [1752] Gray RD, Haggart K, Lee DK, Cull S, Lipworth BJ. Effects of butterbur treatment in intermittent allergic rhinitis: a placebo-controlled evaluation. Ann Allergy Asthma Immunol. 2004 Jul;93(1):56-60.
- [1753] Schapowal A. Treating intermittent allergic rhinitis: a prospective, randomized, placebo and antihistaminecontrolled study of Butterbur extract Ze 339. Phytother Res. 2005 Jun;19(6):530-7.
- [1754] Bielory L. Complementary and alternative interventions in asthma, allergy, and immunology. Ann Allergy Asthma Immunol. 2004 Aug;93(2 Suppl 1):S45-54.
- [1755] Saper RB, Kales SN, Paquin J, Burns MJ, Eisenberg DM, Davis RB, et al. Heavy metal content of ayurvedic herbal medicine products. Jama 2004 Dec 15;292(23):2868-73.
- [1756] Niggemann B, Gruber C. Side-effects of complementary and alternative medicine. Allergy. 2003 Aug;58(8):707-16.
- [1757] Final rule declaring dietary supplements containing ephedrine alkaloids adulterated because they present an unreasonable risk. Final rule. Fed Regist. 2004 Feb 11; 69: 6787-854, 2004.
- [1758] WHO Expert committee on specifications for pharmaceutical preparations. Thirty-fourth report. Geneva, WHO 1996; 178-184 (WHO Technical Report series n.863). 1996.
- [1759] Research Guidelines for evaluation of the safety and efficacy of herbal medicines. Manila, World Health Organization Regional Office for the Western Pacific 1993: 35-40. 1993.
- [1760] Spector SL, Toshener D, Gay I, Rosenman E. Beneficial effects of propylene and polyethylene glycol and saline in the treatment of perennial rhinitis. Clin Allergy. 1982 Mar;12(2):187-96.
- [1761] Taccariello M, Parikh A, Darby Y, Scadding G. Nasal douching as a valuable adjunct in the management of chronic rhinosinusitis. Rhinology. 1999;37(1):29-32.
- [1762] Passali D, Damiani V, Passali FM, Passali GC, Bellussi L. Atomized nasal douche vs nasal lavage in acute viral rhinitis. Arch Otolaryngol Head Neck Surg. 2005 Sep;131(9):788-90.
- [1763] Koreck AI, Csoma Z, Bodai L, Ignacz F, Kenderessy AS, Kadocsa E, et al. Rhinophototherapy: a new therapeutic tool for the management of allergic rhinitis. J Allergy Clin Immunol. 2005 Mar;115(3):541-7.
- [1764] O'Meara TJ, Sercombe JK, Morgan G, Reddel HK, Xuan W, Tovey ER. The reduction of rhinitis symptoms by nasal filters during natural exposure to ragweed and grass pollen. Allergy. 2005 Apr;60(4):529-32.
- [1765] Schwetz S, Olze H, Melchisedech S, Grigorov A, Latza R. Efficacy of pollen blocker cream in the treatment of allergic rhinitis. Arch Otolaryngol Head Neck Surg. 2004 Aug;130(8):979-84.
- [1766] Emberlin JC, Lewis RA. A double blind, placebo controlled trial of inert cellulose powder for the relief of symptoms of hay fever in adults. Curr Med Res Opin. 2006 Feb;22(2):275-85.
- [1767] Gotoh M, Okubo K, Okuda M. Inhibitory effects of facemasks and eyeglasses on invasion of pollen particles in the nose and eye: a clinical study. Rhinology. 2005 Dec;43(4):266-70.
- [1768] Giovannini M, Agostoni C, Riva E, Salvini F, Ruscitto A, Zuccotti GV, et al. A Randomized Prospective Double Blind Controlled Trial on Effects of Long-Term Consumption of Fermented Milk Containing Lactobacillus casei in Pre-School Children With Allergic Asthma and/or Rhinitis. Pediatr Res. 2007 Jun 25.
- [1769] Tamura M, Shikina T, Morihana T, Hayama M, Kajimoto O, Sakamoto A, et al. Effects of probiotics on allergic rhinitis induced by Japanese cedar pollen: randomized double-blind, placebo-controlled clinical trial. Int Arch Allergy Immunol. 2007;143(1):75-82.
- [1770] Mori S, Fujieda S, Igarashi M, Fan GK, Saito H. Submucous turbinectomy decreases not only nasal

stiffness but also sneezing and rhinorrhea in patients with perennial allergic rhinitis [In Process Citation]. Clin Exp Allergy. 1999;29(11):1542-8.

- [1771] Inouye T, Tanabe T, Nakanoboh M, Ogura M. Laser surgery for allergic and hypertrophic rhinitis [In Process Citation]. Ann Otol Rhinol Laryngol Suppl. 1999;180:3-19.
- [1772] Sadanaga M. Clinical evaluation of vidian neurectomy for nasal allergy. Auris Nasus Larynx. 1989;16(Suppl 1):S53-7.
- [1773] Blom HM, Severijnen LA, Van Rijswijk JB, Mulder PG, Van Wijk RG, Fokkens WJ. The long-term effects of capsaicin aqueous spray on the nasal mucosa. Clin Exp Allergy. 1998;28(11):1351-8.
- [1774] Jones NS. Current concepts in the management of paediatric rhinosinusitis. J Laryngol Otol. 1999;113(1):1-9.
- [1775] Osguthorpe JD, Hadley JA. Rhinosinusitis. Current concepts in evaluation and management. Med Clin North Am. 1999;83(1):27-41, vii-viii.
- [1776] Stammberger H. Surgical treatment of nasal polyps: past, present, and future [In Process Citation]. Allergy. 1999;53:7-11.
- [1777] Lildholdt T, Rundcrantz H, Bende M, Larsen K. Glucocorticoid treatment for nasal polyps. The use of topical budesonide powder, intramuscular betamethasone, and surgical treatment. Arch Otolaryngol Head Neck Surg. 1997;123(6):595-600.
- [1778] Essential Medicines. WHO Model List (revised March 2005).

www.who.int/medicines/publications/essentialmedicines/ en/. 2005.

- [1779] Maurer M, Zuberbier T. Undertreatment of rhinitis symptoms in Europe: findings from a cross-sectional questionnaire survey. Allergy. 2007 Jun 20.
- [1780] Kaliner M. Progressive management strategies in the treatment of rhinitis. Allergy Asthma Proc. 2003 May-Jun;24(3):163-9.
- [1781] Cuervo LG, Clarke M. Balancing benefits and harms in health care. Bmj. 2003 Jul 12;327(7406):65-6.
- [1782] Bousquet J, Clark TJ, Hurd S, Khaltaev N, Lenfant C, O'Byrne P, et al. GINA guidelines on asthma and beyond. Allergy. 2007 Feb;62(2):102-12.
- [1783] Atkins D, Briss PA, Eccles M, Flottorp S, Guyatt GH, Harbour RT, et al. Systems for grading the quality of evidence and the strength of recommendations II: pilot study of a new system. BMC Health Serv Res, 2005 Mar 23;5(1):25.
- [1784] Global Programme on Evidence for Health Policy. Guidelines for WHO Guidelines. EIP/OPE/EQC/2003.1. Geneva, World Health Organization; 2003. 2003.
- [1785] Ait-Khaled N, Auregan G, Bencharif N, Camara LM, Dagli E, Djankine K, et al. Affordability of inhaled corticosteroids as a potential barrier to treatment of asthma in some developing countries. Int J Tuberc Lung Dis. 2000 Mar;4(3):268-71.
- [1786] Enarson DA, Ait-Khaled N. Cultural barriers to asthma management. Pediatr Pulmonol. 1999;28(4):297-300.
- [1787] Ait-Khaled N, Enarson DA. Management of asthma: the essentials of good elinical practice. Int J Tuberc Lung Dis. 2006 Feb;10(2):133-7.
- [1788] Pincus T, Sokka T, Stein CM. Pharmacist scope of practice. Ann Intern Med. 2002;136(1):79-85.
- [1789] Dessing RP. Ethics applied to pharmacy practice. Pharm World Sci. 2000;22(1):10-6.
- [1790] Strom BL, Hennessy S. Pharmacist care and clinical outcomes for patients with reactive airways disease. Jama. 2002;288(13):1642-3.
- [1791] Kjellman NI. Natural course of asthma and allergy in childhood. Pediatr Allergy Immunol. 1994;5(6 Suppl):13-8.
- [1792] Al Sayyad J, Fedorowicz Z, Alhashimi D, Jamal A. Topical nasal steroids for intermittent and persistent allergic rhinitis in children. Cochrane Database Syst Rev. 2007(1):CD003163.

- [1793] Philpott CM, Conboy P, Al-Azzawi F, Murty G. Nasal physiological changes during pregnancy. Clin Otolaryngol Allied Sci. 2004 Aug;29(4):343-51.
- [1794] Demoly P, Piette V, Daures JP. Treatment of allergic rhinitis during pregnancy. Drugs. 2003;63(17):1813-20.
- [1795] Yawn B, Knudtson M. Treating asthma and comorbid allergic rhinitis in pregnancy. J Am Board Fam Med. 2007 May-Jun;20(3):289-98.
- [1796] Schatz M. Interrelationships between asthma and pregnancy: a literature review. J Allergy Clin Immunol. 1999;103(2 Pt 2):S330-6.
- [1797] Ciprandi G, Liccardi G, D'Amato G, Motolese A, Giannetti A, Fasce R, et al. Treatment of allergic diseases during pregnancy. J Investig Allergol Clin Immunol. 1997;7(6):557-65.
- [1798] Ellegard EK, Hellgren M, Karlsson NG. Fluticasone propionate aqueous nasal spray in pregnancy rhinitis. Clin Otolaryngol. 2001 Oct;26(5):394-400.
- [1799] Edelstein DR. Aging of the normal nose in adults. Laryngoscope. 1996;106(9 Pt 2):1-25.
- [1800] Kaliner MA. H1 antihistamines in the elderly. Clin Allergy Immunol 2002;17:465-81.
- [1801] Busse PJ. Allergic respiratory disease in the elderly. Am J Med. 2007 Jun;120(6):498-502.
- [1802] Suissa S, Baltzan M, Kremer R, Ernst P. Inhaled and nasal corticosteroid use and the risk of fracture. Am J Respir Crit Care Med. 2004 Jan 1;169(1):83-8.
- [1803] World anti-doping Agency (WAQA) Code. The 2006 prohibited List, effective January 1, 2006 (http://www.wada.ama.org). 2006.
- [1804] Dykewicz MS, Fineman S, Nicklas R, Lee R, Blessing-Moore J, Li JT, et al. Joint Task Force Algorithm and Annotations for Diagnosis and Management of Rhinitis. Ann Allergy Asthma Immunol. 1998;81(5 Pt 2):469-73.
- [1805] Sheikh A, Khan-Wasti S, Price D, Smeeth L, Fletcher M, Walker S. Standardized training for healthcare professionals and its impact on patients with perennial rhinitis: a multi-centre randomized controlled trial. Clin Exp Allergy. 2007 Jan;37(1):90-9.
- [1806] Tang K, Beaglehole R, O'Byrne D. Policy and partnership for health promotion- addressing the determinants of health. World Health Organ Bull. 2005;83(12):884-5.
- [1807] Asher I, Baena-Cagnani C, Boner A, Canonica GW, Chuchalin A, Custovic A, et al. World Allergy Organization guidelines for prevention of allergy and allergic asthma. Int Arch Allergy Immunol. 2004 Sep;135(1):83-92.
- [1808] Prevention strategies for asthma--primary prevention. Cmaj. 2005 Sep 13;173(6 Suppl):S20-4.
- [1809] Chan-Yeung M, Becker A. Primary prevention of childhood asthma and allergic disorders. Curr Opin Allergy Clin Immunol. 2006 Jun;6(3):146-51.
- [1810] Prescott SL, Tang ML. The Australasian Society of Clinical Immunology and Allergy position statement: Summary of allergy prevention in children. Med J Aust. 2005 May 2;182(9):464-7.
- [1811] Gdalevich M, Mimouni D, Mimouni M. Breast-feeding and the risk of bronchial asthma in childhood: a systematic review with meta-analysis of prospective studies. J Pediatr. 2001 Aug;139(2):261-6.
- [1812] Kull I, Almqvist C, Lilja G, Pershagen G, Wickman M. Breast-feeding reduces the risk of asthma during the first 4 years of life. J Allergy Clin Immunol. 2004 Oct;114(4):755-60.
- [1813] Kull I, Bohme M, Wahlgren CF, Nordvall L, Pershagen G, Wickman M. Breast-feeding reduces the risk for childhood eczema. J Allergy Clin Immunol. 2005 Sep;116(3):657-61.
- [1814] Miyake Y, Yura A, Iki M. Breastfeeding and the prevalence of symptoms of allergic disorders in Japanese adolescents. Clin Exp Allergy. 2003 Mar;33(3):312-6.
- [1815] Muraro A, Dreborg S, Halken S, Host A, Niggemann B, Aalberse R, et al. Dietary prevention of allergic diseases in infants and small children. Part I: immunologic

background and criteria for hypoallergenicity. Pediatr Allergy Immunol. 2004 Apr;15(2):103-11.

- [1816] Muraro A, Dreborg S, Halken S, Host A, Niggemann B, Aalberse R, et al. Dietary prevention of allergic diseases in infants and small children. Part III: Critical review of published peer-reviewed observational and interventional studies and final recommendations. Pediatr Allergy Immunol. 2004 Aug;15(4):291-307.
- [1817] Muraro A, Dreborg S, Halken S, Host A, Niggemann B, Aalberse R, et al. Dietary prevention of allergic diseases in infants and small children. Part II. Evaluation of methods in allergy prevention studies and sensitization markers. Definitions and diagnostic criteria of allergic diseases. Pediatr Allergy Immunol. 2004 Jun;15(3):196-205.
- [1818] Sears MR, Greene JM, Willan AR, Taylor DR, Flannery EM, Cowan JO, et al. Long-term relation between breastfeeding and development of atopy and asthma in children and young adults: a longitudinal study. Lancet. 2002 Sep 21;360(9337):901-7.
- [1819] Wright AL, Holberg CJ, Taussig LM, Martinez FD. Factors influencing the relation of infant feeding to asthma and recurrent wheeze in childhood. Thorax. 2001 Mar;56(3):192-7.
- [1820] Takemura Y, Sakurai Y, Honjo S, Kusakari A, Hara T, Gibo M, et al. Relation between breastfeeding and the prevalence of asthma : the Tokorozawa Childhood Asthma and Pollinosis Study. Am J Epidemiol. 2001 Jul 15;154(2):115-9.
- [1821] Oddy WH, Holt PG, Sly PD, Read AW, Landau LI, Stanley FJ, et al. Association between breast feeding and asthma in 6 year old children: findings of a prospective birth cohort study. Bmj. 1999 Sep 25;319(7213):815-9.
- [1822] Burgess SW, Dakin CJ, O'Callaghan MJ. Breastfeeding does not increase the risk of asthma at 14 years. Pediatrics. 2006 Apr;117(4):e787-92.
- [1823] Obihara CC, Marais BJ, Gie RP, Potter P, Bateman ED, Lombard CJ, et al. The association of prolonged breastfeeding and allergic disease in poor urban children. Eur Respir J. 2005 Jun;25(6):970-7.
- [1824] Kramer MS, Kakuma R. The optimal duration of exclusive breastfeeding: a systematic review. Adv Exp Med Biol. 2004;554:63-77.
- [1825] Friedman NJ, Zeiger RS. The role of breast-feeding in the development of allergies and asthma. J Allergy Clin Immunol. 2005 Jun;115(6):1238-48.
- [1826] Hoekstra MO, Niers LE, Steenhuis TJ, Rovers M, Knol EF, Uiterwaal CS. Is randomization of breast-feeding feasible? J Allergy Clin Immunol. 2005 Jun;115(6):1324; author reply -5.
- [1827] Lowe AJ, Carlin JB, Bennett CM, Abramson MJ, Hosking CS, Hill DJ, et al. Atopic disease and breastfeeding--cause or consequence? J Allergy Clin Immunol. 2006 Mar;117(3):682-7.
- [1828] Osborn DA, Sinn J. Formulas containing hydrolysed protein for prevention of allergy and food intolerance in infants. Cochrane Database Syst Rev. 2006(4):CD003664.
- [1829] Osborn DA, Sinn J, Soy formula for prevention of allergy and food intolerance in infants. Cochrane Database Syst Rev. 2004(3):CD003741.
- [1830] Fiocchi A, Assa'ad A, Bahna S. Food allergy and the introduction of solid foods to infants: a consensus document. Adverse Reactions to Foods Committee, American College of Allergy, Asthma and Immunology. Ann Allergy Asthma Immunol. 2006 Jul;97(1):10-20; quiz 1, 77.
- [1831] Kramer M, Kakuma R. Maternal dietary antigen avoidance during pregnancy or lactation, or both, for preventing or treating atopic disease in the child. Cochrane Database Syst Rev. 2006;3:CD000133.
- [1832] Isolauri E, Sutas Y, Salo MK, Isosomppi R, Kaila M. Elimination diet in cow's milk allergy: risk for impaired growth in young children. J Pediatr. 1998;132(6):1004-9.
- [1833] Arshad SH, Bojarskas J, Tsitoura S, Matthews S, Mealy B, Dean T, et al. Prevention of sensitization to house dust

mite by allergen avoidance in school age children: a randomized controlled study. Clin Exp Allergy. 2002 Jun;32(6):843-9.

- [1834] Arshad SH, Bateman B, Matthews SM. Primary prevention of asthma and atopy during childhood by allergen avoidance in infancy: a randomised controlled study. Thorax. 2003 Jun;58(6):489-93.
- [1835] Chan-Yeung M, Ferguson A, Watson W, Dimich-Ward H, Rousseau R, Lilley M, et al. The Canadian Childhood Asthma Primary Prevention Study: outcomes at 7 years of age. J Allergy Clin Immunol. 2005 Jul;116(1):49-55.
- [1836] van Strien RT, Koopman LP, Kerkhof M, Spithoven J, de Jongste JC, Gerritsen J, et al. Mite and pet allergen levels in homes of children born to allergic and nonallergic parents: the PIAMA study. Environ Health Perspect. 2002;110(11):A693-8.
- [1837] Corver K, Kerkhof M, Brussee JE, Brunekreef B, van Strien RT, Vos AP, et al. House dust mite allergen reduction and allergy at 4 yr: follow up of the PIAMAstudy. Pediatr Allergy Immunol. 2006 Aug;17(5):329-36.
- [1838] Simpson A, Custovic A. Allergen avoidance in the primary prevention of asthma. Curr Opin Allergy Clin Immunol. 2004 Feb;4(1):45-51.
- [1839] Simpson A, Simpson B, Custovic A, Craven M, Woodcock A. Stringent environmental control in pregnancy and early life: the long-term effects on mite, cat and dog allergen. Clin Exp Allergy. 2003 Sep;33(9):1183-9.
- [1840] Horak F, Jr., Matthews S, Ihorst G, Arshad SH, Frischer T, Kuehr J, et al. Effect of mite-impermeable mattress encasings and an educational package on the development of allergies in a multinational randomized, controlled birth-cohort study -- 24 months results of the Study of Prevention of Allergy in Children in Europe. Clin Exp Allergy. 2004 Aug;34(8):1220-5.
- [1841] Mihrshahi S, Peat JK, Marks GB, Mellis CM, Tovey ER, Webb K, et al. Eighteen-month outcomes of house dust mite avoidance and dietary fatty acid modification in the Childhood Asthma Prevention Study (CAPS). J Allergy Clin Immunol. 2003 Jan;111(1):162-8.
- [1842] Wahn U, Bergmann R, Kulig M, Forster J, Bauer CP. The natural course of sensitisation and atopic disease in infancy and childhood. Pediatr Allergy Immunol. 1997;8(10 Suppl):16-20.
- [1843] Illi S, von Mutius E, Lau S, Niggemann B, Gruber C, Wahn U. Perennial allergen sensitisation early in life and chronic asthma in children: a birth cohort study. Lancet. 2006 Aug 26;368(9537):763-70.
- [1844] Lau S, Illi S, Sommerfeld C, Niggemann B, Bergmann R, von Mutius E, et al. Early exposure to house-dust mite and cat allergens and development of childhood asthma: a cohort study. Multicentre Allergy Study Group. Lancet. 2000 Oct 21;356(9239):1392-7.
- [1845] Lau S, Illi S, Platts-Mills TA, Riposo D, Nickel R, Gruber C, et al. Longitudinal study on the relationship between cat allergen and endotoxin exposure, sensitization, cat-specific IgG and development of asthma in childhood--report of the German Multicentre Allergy Study (MAS 90). Allergy. 2005 Jun;60(6):766-73.
- [1846] Brussee JE, Smit HA, van Strien RT, Corver K, Kerkhof M, Wijga AH, et al. Allergen exposure in infancy and the development of sensitization, wheeze, and asthma at 4 years. J Allergy Clin Immunol. 2005 May;115(5):946-52.
- [1847] Frosh AC, Sandhu G, Joyce R, Strachan DP. Prevalence of rhinitis, pillow type and past and present ownership of furred pets [see comments]. Clin Exp Allergy. 1999;29(4):457-60.
- [1848] Hesselmar B, Aberg N, Aberg B, Eriksson B, Bjorksten B. Does early exposure to cat or dog protect against later allergy development? [In Process Citation]. Clin Exp Allergy. 1999;29(5):611-7.
- [1849] Ownby DR, Johnson CC, Peterson EL. Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. Jama. 2002;288(8):963-72.

- [1850] Nafstad P, Magnus P, Gaarder PI, Jaakkola JJ. Exposure to pets and atopy-related diseases in the first 4 years of life. Allergy. 2001 Apr;56(4):307-12.
- [1851] Svanes C, Heinrich J, Jarvis D, Chinn S, Omenaas E, Gulsvik A, et al. Pet-keeping in childhood and adult asthma and hay fever: European community respiratory health survey. J Allergy Clin Immunol. 2003 Aug;112(2):289-300.
- [1852] Platts-Mills T, Vaughan J, Squillace S, Woodfolk J, Sporik R. Sensitisation, asthma, and a modified Th2 response in children exposed to cat allergen: a population-based cross-sectional study. Lancet. 2001;357(9258):752-6.
- [1853] Munir AK, Kjellman NI, Bjorksten B. Exposure to indoor allergens in early infancy and sensitization. J Allergy Clin Immunol. 1997 Aug;100(2):177-81.
- [1854] Cullinan P, MacNeill SJ, Harris JM, Moffat S, White C, Mills P, et al. Early allergen exposure, skin prick responses, and atopic wheeze at age 5 in English children: a cohort study. Thorax. 2004 Oct;59(10):855-61.
- [1855] Anyo G, Brunekreef B, de Meer G, Aarts F, Janssen NA, van Vliet P. Early, current and past pet ownership: associations with sensitization, bronchial responsiveness and allergic symptoms in school children. Clin Exp Allergy. 2002 Mar;32(3):361-6.
- [1856] Almqvist C, Egmar AC, van Hage-Hamsten M, Berglind N, Pershagen G, Nordvall SL, et al. Heredity, pet ownership, and confounding control in a populationbased birth cohort. J Allergy Clin Immunol. 2003 Apr;111(4):800-6.
- [1857] Woodfolk JA, Platts-Mills TA. The immune response to intrinsic and extrinsic allergens: determinants of allergic disease. Int Arch Allergy Immunol. 2002;129(4):277-85.
- [1858] Tarlo SM, Liss GM. Can medical surveillance measures improve the outcome of occupational asthma? J Allergy Clin Immunol. 2001 Apr;107(4):583-5.
- [1859] Cullinan P, Harris JM, Newman Taylor AJ, Hole AM, Jones M, Barnes F, et al. An outbreak of asthma in a modern detergent factory. Lancet. 2000 Dec 2;356(9245):1899-900.
- [1860] Cathcart M, Nicholson P, Roberts D, Bazley M, Juniper C, Murray P, et al. Enzyme exposure, smoking and lung function in employees in the detergent industry over 20 years. Medical Subcommittee of the UK Soap and Detergent Industry Association. Occup Med Oxf. 1997;47(8):473-8.
- [1861] Sarlo K. Control of occupational asthma and allergy in the detergent industry. Ann Allergy Asthma Immunol. 2003 May;90(5 Suppl 2):32-4.
- [1862] Tarlo SM, Liss GM. Prevention of occupational asthma-practical implications for occupational physicians. Occup Med (Lond). 2005 Dec;55(8):588-94.
- [1863] LaMontagne AD, Radi S, Elder DS, Abramson MJ, Sim M. Primary prevention of latex related sensitisation and occupational asthma: a systematic review. Occup Environ Med. 2006 May;63(5):359-64.
- [1864] Tarlo SM, Liss GM. Disocyanate-induced asthma: diagnosis, prognosis, and effects of medical surveillance measures. Appl Occup Environ Hyg. 2002 Dec;17(12):902-8.
- [1865] Gannon PF, Berg AS, Gayosso R, Henderson B, Sax SE, Willems HM. Occupational asthma prevention and management in industry--an example of a global programme. Occup Med (Lond). 2005 Dec;55(8):600-5.
- [1866] Stick SM, Burton PR, Gurrin L, Sly PD, LeSouef PN. Effects of maternal smoking during pregnancy and a family history of asthma on respiratory function in newborn infants. Lancet. 1996;348(9034):1060-4.
- [1867] Lodrup Carlsen KC, Jaakkola JJ, Nafstad P, Carlsen KH. In utero exposure to cigarette smoking influences lung function at birth. Eur Respir J. 1997 Aug;10(8):1774-9.
- [1868] Gilliland FD, Berhane K, Li YF, Rappaport EB, Peters JM. Effects of early onset asthma and in utero exposure to maternal smoking on childhood lung function. Am J Respir Crit Care Med. 2003 Mar 15;167(6):917-24.

- [1869] Nafstad P, Kongerud J, Botten G, Hagen JA, Jaakkola JJ. The role of passive smoking in the development of bronchial obstruction during the first 2 years of life. Epidemiology. 1997;8(3):293-7.
- [1870] Wennergren G, Amark M, Amark K, Oskarsdottir S, Sten G, Redfors S. Wheezing bronchitis reinvestigated at the age of 10 years. Acta Paediatr. 1997;86(4):351-5.
- [1871] Rylander E, Pershagen G, Eriksson M, Nordvall L. Parental smoking and other risk factors for wheezing bronchitis in children. Eur J Epidemiol. 1993;9(5):517-26.
- [1872] Strachan DP, Cook DG. Health effects of passive smoking. 1. Parental smoking and lower respiratory illness in infancy and early childhood. Thorax. 1997 Oct;52(10):905-14.
- [1873] Raherison C, Penard-Morand C, Moreau D, Caillaud D, Charpin D, Kopfersmitt C, et al. In utero and childhood exposure to parental tobacco smoke, and allergies in schoolchildren. Respir Med. 2007 Jan;101(1):107-17.
- [1874] Lux AL, Henderson AJ, Pocock SJ. Wheeze associated with prenatal tobacco smoke exposure: a prospective, longitudinal study. ALSPAC Study Team. Arch Dis Child. 2000;83(4):307-12.
- [1875] Lannero E, Wickman M, Pershagen G, Nordvall L. Maternal smoking during pregnancy increases the risk of recurrent wheezing during the first years of life (BAMSE). Respir Res. 2006;7:3.
- [1876] Johnstone D, Dutton A. The value of hyposensitization therapy for bronchial asthma in children: a fourteen-year study. Pediatrics. 1968;42:793-802.
- [1877] Pajno GB, Morabito L, Barberio G, Parmiani S. Clinical and immunologic effects of long-term sublingual immunotherapy in asthmatic children sensitized to mites: a double-blind, placebo-controlled study. Allergy. 2000;55(9):842-9.
- [1878] Iikura Y, Naspitz CK, Mikawa H, Talaricoficho S, Baba M, Sole D, et al. Prevention of asthma by ketotifen in infants with atopic dermatitis. Ann Allergy. 1992;68(3):233-6.
- [1879] Warner JO. Early treatment of the atopic child. Pediatr Allergy Immunol. 1997;8(10 Suppl):46-8.
- [1880] Purello-D'Ambrosio F, Gangemi S, Merendino RA, Isola S, Puccinelli P, Parmiani S, et al. Prevention of new sensitizations in monosensitized subjects submitted to specific immunotherapy or not. A retrospective study. Clin Exp Allergy. 2001;31(8):1295-302.
- [1881] Cruz AA. The 'united airways' require an holistic approach to management. Allergy. 2005 Jul;60(7):871-4.
- [1882] Linneberg A, Henrik Nielsen N, Frolund L, Madsen F, Dirksen A, Jorgensen T. The link between allergic rhinitis and allergic asthma: a prospective populationbased study. The Copenhagen Allergy Study. Allergy. 2002 Nov;57(11):1048-52.
- [1883] Leynaert B, Neukirch C, Kony S, Guenegou A, Bousquet J, Aubier M, et al. Association between asthma and rhinitis according to atopic sensitization in a populationbased study. J Allergy Clin Immunol. 2004 Jan;113(1):86-93.
- [1884] Downie SR, Andersson M, Rimmer J, Leuppi JD, Xuan W, Akerlund A, et al. Association between nasal and bronchial symptoms in subjects with persistent allergic rhinitis. Allergy. 2004 Mar;59(3):320-6.
- [1885] Antonicelli L, Micucci C, Voltolini S, Feliziani V, Senna GE, Di Blasi P, et al. Allergic rhinitis and asthma comorbidity: ARIA classification of rhinitis does not correlate with the prevalence of asthma. Clin Exp Allergy. 2007 Jun;37(6):954-60.
- [1886] Hellgren J, Toren K, Balder B, Palmqvist M, Lowhagen O, Karlsson G. Increased nasal mucosal swelling in subjects with asthma. Clin Exp Allergy. 2002 Jan;32(1):64-9.
- [1887] Aronsson D, Tufvesson E, Bjermer L. Allergic rhinitis with or without concomitant asthma: difference in perception of dyspnoea and levels of fractional exhaled nitric oxide. Clin Exp Allergy. 2005 Nov;35(11):1457-61.

- [1888] Linneberg A, Jorgensen T, Nielsen NH, Madsen F, Frolund L, Dirksen A. The prevalence of skin-testpositive allergic rhinitis in Danish adults: two crosssectional surveys 8 years apart. The Copenhagen Allergy Study. Allergy. 2000 Aug;55(8):767-72.
- [1889] Montnemery P, Svensson C, Adelroth E, Lofdahl CG, Andersson M, Greiff L, et al. Prevalence of nasal symptoms and their relation to self-reported asthma and chronic bronchitis/emphysema. Eur Respir J. 2001 Apr;17(4):596-603.
- [1890] Peroni DG, Piacentini GL, Alfonsi L, Zerman L, Di Blasi P, Visona G, et al. Rhinitis in pre-school children: prevalence, association with allergic diseases and risk factors. Clin Exp Allergy. 2003 Oct;33(10):1349-54.
- [1891] Terreehorst I, Oosting AJ, Tempels-Pavlica Z, de Monchy JG, Bruijnzeel-Koomen CA, Hak E, et al. Prevalence and severity of allergic rhinitis in house dust mite-allergic patients with bronchial asthma or atopic dermatitis. Clin Exp Allergy. 2002 Aug;32(8):1160-5.
- [1892] Bugiani M, Carosso A, Migliore E, Piccioni P, Corsico A, Olivieri M, et al. Allergic rhinitis and asthma comorbidity in a survey of young adults in Italy. Allergy. 2005 Feb;60(2):165-70.
- [1893] Georgy V, Fahim HI, El Gaafary M, Walters S. Prevalence and socioeconomic associations of asthma and allergic rhinitis in Cairo, Egypt. Eur Respir J. 2006 May 31.
- [1894] Kuyucu S, Saraclar Y, Tuncer A, Geyik PO, Adalioglu G, Akpinarli A, et al. Epidemiologic characteristics of rhinitis in Turkish children: the International Study of Asthma and Allergies in Childhood (ISAAC) phase 2. Pediatr Allergy Immunol. 2006 Jun;17(4):269-77.
- [1895] Al Frayh AR, Shakoor Z, Gad El Rab MO, Hasnain SM. Increased prevalence of asthma in Saudi Arabia. Ann Allergy Asthma Immunol. 2001 Mar;86(3):292-6.
- [1896] Zanolin ME, Pattaro C, Corsico A, Bugiani M, Carrozzi L, Casali L, et al. The role of climate on the geographic variability of asthma, allergic rhinitis and respiratory symptoms: results from the Italian study of asthma in young adults. Allergy. 2004 Mar;59(3):306-14.
- [1897] Rosado-Pinto J, Gaspar A, Morais-Almeida M. Epidémiologie de l'asthme et des maladies allergiques dans les pays lusitanophones. Rev Fr Allergol Immunol Clin. 2006;46:305-6.
- [1898] Banac S, Tomulic KL, Ahel V, Rozmanic V, Simundic N, Zubovic S, et al. Prevalence of asthma and allergic diseases in Croatian children is increasing: survey study. Croat Med J. 2004 Dec;45(6):721-6.
- [1899] Sakar A, Yorgancioglu A, Dinc G, Yuksel H, Celik P, Dagyildizi L, et al. The prevalence of asthma and allergic symptoms in Manisa, Turkey (A western city from a country bridging Asia and Europe) Asian Pac J Allergy Immunol. 2006 Mar;24(1):17-25
- [1900] Viegi G, La Grutta S. Rhinoconjunctivitis and wheeze in preschool children: a different relationship than in adults (United or Coexistent Airways Disease)? Allergy. 2007 Apr;62(4):344-7.
- [1901] Leynaert B, Neukirch F, Demoly P, Bousquet J. Epidemiologic evidence for asthma and rhinitis comorbidity. J Allergy Clin Immunol. 2000;106(5 Pt 2):201-5.
- [1902] Celedon JC, Palmer LJ, Weiss ST, Wang B, Fang Z, Xu X. Asthma, Thinitis, and skin test reactivity to aeroallergens in families of asthmatic subjects in Anqing, China. Am J Respir Crit Care Med. 2001 Apr;163(5):1108-12.
- [1903] Mavale Manuel S, Joaquim O, Macome C, Almeida L, Nunes E, Daniel A, et al. Asthma and allergies in schoolchildren of Maputo. Allergy. 2007 Mar;62(3):265-71.
- [1904] Ait-Khaled N, Odhiambo J, Pearce N, Adjoh KS, Maesano IA, Benhabyles B, et al. Prevalence of symptoms of asthma, rhinitis and eczema in 13- to 14year-old children in Africa: the International Study of Asthma and Allergies in Childhood Phase III. Allergy. 2007 Mar;62(3):247-58.

- [1905] Dennis R, Caraballo L, Garcia E, Caballero A, Aristizabal G, Cordoba H, et al. Asthma and other allergic conditions in Colombia: a study in 6 cities. Ann Allergy Asthma Immunol. 2004 Dec;93(6):568-74.
- [1906] Nga NN, Chai SK, Bihn TT, Redding G, Takaro T, Checkoway H, et al. ISAAC-based asthma and atopic symptoms among Ha Noi school children. Pediatr Allergy Immunol. 2003 Aug;14(4):272-9.
- [1907] Kabir ML, Rahman F, Hassan MQ, Ahamed F, Mridha MA. Asthma, atopic eczema and allergic rhinoconjunctivitis in school children. Mymensingh Med J. 2005 Jan;14(1):41-5.
- [1908] Sole D, Camelo-Nunes IC, Vana AT, Yamada E, Werneck F, de Freitas LS, et al. Prevalence of rhinitis and related-symptoms in schoolchildren from different cities in Brazil. Allergol Immunopathol (Madr). 2004 Jan-Feb;32(1):7-12.
- [1909] Bousquet J, Gaugris S, Kocevar VS, Zhang Q, Yin DD, Polos PG, et al. Increased risk of asthma attacks and emergency visits among asthma patients with allergic rhinitis: a subgroup analysis of the improving asthma control trial. Clin Exp Allergy. 2005 Jun;35(6):723-7.
- [1910] Price D, Zhang Q, Kocevar VS, Yin DD, Thomas M. Effect of a concomitant diagnosis of allergic rhinitis on asthma-related health care use by adults. Clin Exp Allergy. 2005 Mar;35(3):282-7.
- [1911] Sazonov Kocevar V, Thomas J, 3rd, Jonsson L, Valovirta E, Kristensen F, Yin DD, et al. Association between allergic rhinitis and hospital resource use among asthmatic children in Norway. Allergy. 2005 Mar;60(3):338-42.
- [1912] Thomas M, Kocevar VS, Zhang Q, Yin DD, Price D. Asthma-related health care resource use among asthmatic children with and without concomitant allergic rhinitis. Pediatrics. 2005 Jan;115(1):129-34.
- [J913] Gaugris S, Sazonov-Kocevar V, Thomas M. Burden of concomitant allergic rhinitis in adults with asthma. J Asthma. 2006 Feb;43(1):1-7.
- [1914] Sole D, Camelo-Nunes IC, Wandalsen GF, Melo KC, Naspitz CK. Is rhinitis alone or associated with atopic eczema a risk factor for severe asthma in children? Pediatr Allergy Immunol. 2005 Mar;16(2):121-5.
- [1915] Kanani AS, Broder I, Greene JM, Tarlo SM. Correlation between nasal symptoms and asthma severity in patients with atopic and nonatopic asthma. Ann Allergy Asthma Immunol. 2005 Mar;94(3):341-7.
- [1916] Braback L, Hjern A, Rasmussen F. Trends in asthma, allergic rhinitis and eczema among Swedish conscripts from farming and non-farming environments. A nationwide study over three decades. Clin Exp Allergy. 2004 Jan;34(1):38-43.
- [1917] Anderson HR, Ruggles R, Strachan DP, Austin JB, Burr M, Jeffs D, et al. Trends in prevalence of symptoms of asthma, hay fever, and eczema in 12-14 year olds in the British Isles, 1995-2002: questionnaire survey. Bmj. 2004 May 1;328(7447):1052-3.
- [1918] Huurre TM, Aro HM, Jaakkola JJ. Incidence and prevalence of asthma and allergic rhinitis: a cohort study of Finnish adolescents. J Asthma. 2004;41(3):311-7.
- [1919] Robertson CF, Roberts MF, Kappers JH. Asthma prevalence in Melbourne schoolchildren: have we reached the peak? Med J Aust. 2004 Mar 15;180(6):273-6.
- [1920] Teeratakulpisarn J, Wiangnon S, Kosalaraksa P, Heng S. Surveying the prevalence of asthma, allergic rhinitis and eczema in school-children in Khon Kaen, Northeastern Thailand using the ISAAC questionnaire: phase III. Asian Pac J Allergy Immunol. 2004 Dec;22(4):175-81.
- [1921] Vellinga A, Droste JH, Vermeire PA, Desager K, De Backer WA, Nelen VJ, et al. Changes in respiratory and allergic symptoms in schoolchildren from 1996 to 2002, results from the ISAAC surveys in Antwerp (Belgium). Acta Clin Belg. 2005 Sep-Oct;60(5):219-25.
- [1922] Galassi C, De Sario M, Biggeri A, Bisanti L, Chellini E, Ciccone G, et al. Changes in prevalence of asthma and

allergies among children and adolescents in Italy: 1994-2002. Pediatrics. 2006 Jan;117(1):34-42.

- [1923] Braun-Fahrlander C, Gassner M, Grize L, Takken-Sahli K, Neu U, Stricker T, et al. No further increase in asthma, hay fever and atopic sensitisation in adolescents living in Switzerland. Eur Respir J. 2004 Mar;23(3):407-13.
- [1924] Sotomayor H, Badier M, Vervloet D, Orehek J. Seasonal increase of carbachol airway responsiveness in patients allergic to grass pollen. Reversal by corticosteroids. Am Rev Respir Dis. 1984;130(1):56-8.
- [1925] Lowhagen O, Rak S. Modification of bronchial hyperreactivity after treatment with sodium cromoglycate during pollen season. J Allergy Clin Immunol. 1985;75(4):460-7.
- [1926] Madonini E, Briatico-Vangosa G, Pappacoda A, Maccagni G, Cardani A, Saporiti F. Seasonal increase of bronchial reactivity in allergic rhinitis. J Allergy Clin Immunol. 1987;79(2):358-63.
- [1927] Prieto L, Berto JM, Gutierrez V, Tornero C. Effect of inhaled budesonide on seasonal changes in sensitivity and maximal response to methacholine in pollensensitive asthmatic subjects. Eur Respir J. 1994;7(10):1845-51.
- [1928] Hanes LS, Issa E, Proud D, Togias A. Stronger nasal responsiveness to cold air in individuals with rhinitis and asthma, compared with rhinitis alone. Clin Exp Allergy. 2006 Jan;36(1):26-31.
- [1929] Riccioni G, Della Vecchia R, Castronuovo M, Di Pietro V, Spoltore R, De Benedictis M, et al. Bronchial hyperresponsiveness in adults with seasonal and perennial rhinitis: is there a link for asthma and rhinitis? Int J Immunopathol Pharmacol. 2002 Jan-Apr;15(1):69-74.
- [1930] Cuttitta G, Cibella F, La Grutta S, Hopps MR, Bucchieri S, Passalacqua G, et al. Non-specific bronchial hyperresponsiveness in children with allergic rhinitis: Relationship with the atopic status. Pediatr Allergy Immunol. 2003 Dec;14(6):458-63.
- [1931] Alvarez-Puebla MJ, Garcia-Figueroa BE, Tabar-Purroy AI, Olaguibel-Rivera JM. Discriminant analysis in allergic rhinitis and asthma: methacholine dose-response slope allows a good differentiation between mild asthma and rhinitis. Respir Med. 2003 Jan;97(1):30-6.
- [1932] Settipane RJ, Settipane GA. IgE and the allergy-asthma connection in the 23-year follow-up of Brown University students. Allergy Asthma Proc. 2000 Jul-Aug;21(4):221-5
- [1933] Plaschke PP, Janson C, Norrman E, Bjornsson E, Ellbjar S, Jarvholm B. Onset and remission of allergic rhinitis and asthma and the relationship with atopic sensitization and smoking. Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):920-4.
- [1934] Guerra S, Sherrill DL, Martinez FD, Barbee RA. Rhinitis as an independent risk factor for adult-onset asthma. J Allergy Clin Immunol. 2002 Mar,109(3):419-25.
- [1935] Toren K, Olin AC, Hellgren J, Hermansson BA. Rhinitis increase the risk for adult-onset asthma--a Swedish population-based case control study (MAP-study). Respir Med. 2002 Aug;96(8):635-41.
- [1936] Porsbjerg C, von Linstow ML, Ulrik CS, Nepper-Christensen S, Backer V. Risk factors for onset of asthma: a 12-year prospective follow-up study. Chest. 2006 Feb;129(2):309-16.
- [1937] Morais-Almeida M, Gaspar A, Pires G, Prates S, Rosado-Pinto J. Links between rhinitis and asthma. 2007;Allergy Asthma Proc:in press.
- [1938] Ferdousi HA, Zetterstrom O, Dreborg S. Bronchial hyper-responsiveness predicts the development of mild clinical asthma within 2 yr in school children with hayfever. Pediatr Allergy Immunol. 2005 Sep;16(6):478-86.
- [1939] Szczeklik A, Stevenson DD. Aspirin-induced asthma: advances in pathogenesis and management. J Allergy Clin Immunol. 1999;104(1):5-13.
- [1940] Bousquet J, Boushey HA, Busse WW, Canonica GW, Durham SR, Irvin CG, et al. Characteristics of patients

with seasonal allergic rhinitis and concomitant asthma. Clin Exp Allergy. 2004 Jun;34(6):897-903.

- [1941] Bousquet J, Emonot A, Germouty J, Molina C, Montane F, Perrin-Fayolle M, et al. Double-blind multicenter study of cetirizine in grass-pollen-induced asthma. Ann Allergy. 1990;65(6):504-8.
- [1942] Grant JA, Nicodemus CF, Findlay SR, Glovsky MM, Grossman J, Kaiser H, et al. Cetirizine in patients with seasonal rhinitis and concomitant asthma: prospective, randomized, placebo-controlled trial, J Allergy Clin Immunol. 1995;95(5 Pt 1):923-32.
- [1943] Reid MJ, Moss RB, Hsu VP, Kwasnicki JM, Commerford TM, Nelson BL. Seasonal asthma in northern California: allergic causes and efficacy of immunotherapy. J Allergy Clin Immunol. 1986;78(4 Pt 1):590-600.
- [1944] Crighton EJ, Mamdani MM, Upshur RE. A population based time series analysis of asthma hospitalisations in Ontario, Canada: 1988 to 2000. BMC Health Serv Res. 2001;1(1):7.
- [1945] Wark PA, Simpson J, Hensley MJ, Gibson PG. Airway inflammation in thunderstorm asthma. Clin Exp Allergy. 2002 Dec;32(12):1750-6.
- [1946] Levetin E, Van de Water P. Environmental contributions to allergic disease. Curr Allergy Asthma Rep. 2001 Nov;1(6):506-14.
- [1947] Girgis ST, Marks GB, Downs SH, Kolbe A, Car GN, Paton R, Thunderstorm-associated asthma in an inland town in south-eastern Australia. Who is at risk? Eur Respir J. 2000 Jul;16(1):3-8.
- [1948] Meldrum M, Rawbone R, Curran AD, Fishwick D. The role of occupation in the development of chronic obstructive pulmonary disease (COPD). Occup Environ Med. 2005 Apr;62(4):212-4.
- [1949] Malo JL, Lemiere C, Desjardins A, Cartier A. Prevalence and intensity of rhinoconjunctivitis in subjects with occupational asthma. Eur Respir J. 1997;10(7):1513-5.
- [1950] Simons FE. Allergic rhinobronchitis: the asthma-allergic rhinitis link. J Allergy Clin Immunol. 1999;104(3 Pt 1):534-40.
- [1951] Sears MR, Burrows B, Flannery EM, Herbison GP, Hewitt CJ, Holdaway MD. Relation between airway responsiveness and serum IgE in children with asthma and in apparently normal children. N Engl J Med. 1991 Oct 10;325(15):1067-71.
- [1952] Beeh KM, Ksoll M, Buhl R. Elevation of total serum immunoglobulin E is associated with asthma in nonallergic individuals. Eur Respir J. 2000 Oct;16(4):609-14.
- [1953] Wenzel SE. Inflammation, leukotrienes and the pathogenesis of the late asthmatic response [editorial; comment]. Clin Exp Allergy. 1999;29(1):1-3.
- [1954] Busse W, Kraft M. Cysteinyl leukotrienes in allergic inflammation: strategic target for therapy. Chest. 2005 Apr;127(4):1312-26.
- [1955] Cap P, Pehal F, Chladek J, Maly M. Analysis of exhaled leukotrienes in nonasthmatic adult patients with seasonal allergic rhinitis. Allergy. 2005 Feb;60(2):171-6.
- [1956] Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endotheliumderived relaxing factor. Nature. 1987 Jun 11-17;327(6122):524-6.
- [1957] Thippeswamy T, McKay JS, Quinn JP, Morris R. Nitric oxide, a biological double-faced janus--is this good or bad? Histol Histopathol. 2006 Apr;21(4):445-58.
- [1958] Bochner BS, Busse WW. Advances in mechanisms of allergy. J Allergy Clin Immunol. 2004 May;113(5):868-75.
- [1959] Reynaert NL, Ckless K, Wouters EF, van der Vliet A, Janssen-Heininger YM. Nitric oxide and redox signaling in allergic airway inflammation. Antioxid Redox Signal. 2005 Jan-Feb;7(1-2):129-43.
- [1960] Gustafsson LE, Leone AM, Persson MG, Wiklund NP, Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun. 1991 Dec 16;181(2):852-7.

- [1961] Olthoff A, Rohrbach S, Faber M, Gotz W, Laskawi R. Neuronal nitric oxide synthase immunoreactivity in the nasal mucosa of patients with idiopathic and allergic rhinitis. ORL J Otorhinolaryngol Relat Spec. 2002 May-Jun;64(3):180-5.
- [1962] Lundberg JO, Farkas-Szallasi T, Weitzberg E, Rinder J, Lidholm J, Anggaard A, et al. High nitric oxide production in human paranasal sinuses. Nat Med. 1995 Apr;1(4):370-3.
- [1963] Kharitonov SA, Rajakulasingam K, O'Connor B, Durham SR, Barnes PJ. Nasal nitric oxide is increased in patients with asthma and allergic rhinitis and may be modulated by nasal glucocorticoids. J Allergy Clin Immunol. 1997;99(1 Pt 1):58-64.
- [1964] Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Nitric oxide in exhaled air. Eur Respir J. 1996;9(12):2671-80.
- [1965] Mancinelli RL, McKay CP. Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl Environ Microbiol. 1983 Jul;46(1):198-202.
- [1966] Croen KD. Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest. 1993 Jun;91(6):2446-52.
- [1967] Sanders SP, Proud D, Permutt S, Siekierski ES, Yachechko R, Liu MC. Role of nasal nitric oxide in the resolution of experimental rhinovirus infection. J Allergy Clin Immunol. 2004 Apr;113(4):697-702.
- [1968] Sanders SP, Siekierski ES, Porter JD, Richards SM, Proud D. Nitric oxide inhibits rhinovirus-induced cytokine production and viral replication in a human respiratory epithelial cell line. J Virol. 1998 Feb;72(2):934-42.
- [1969] Lundberg JO, Lundberg JM, Settergren G, Alving K, Weitzberg E. Nitric oxide, produced in the upper airways, may act in an 'aerocrine' fashion to enhance pulmonary oxygen uptake in humans. Acta Physiol Scand. 1995 Dec;155(4):467-8.
- [1970] Hogman M, Frostell C, Arnberg H, Hedenstierna G. Inhalation of nitric oxide modulates methacholineinduced bronchoconstriction in the rabbit. Eur Respir J 1993 Feb;6(2):177-80.
- [1971] Igarashi Y, Goldrich MS, Kaliner MA, Irani AM, Schwartz LB, White MV. Quantitation of inflammatory cells in the nasal mucosa of patients with allergic rhintis and normal subjects. J Allergy Clin Immunol. 1995;95(3):716-25.
- [1972] Bousquet J, Jeffery P, Busse W, Johnson M, Vignola A. Asthma: from bronchospasm to airway remodelling. Am J Respir Crit Care Med. 2000:in press.
- [1973] Baroody F, Canning B. Comparative anatomy of the nasal and tracheal/bronchial airways. In: Corren J, Togias A, Bousquet J, eds. Upper and Lower Respiratory Disease Lung Biology in Health and Disease C Lenfant editor Vol 181. NY: Marcel Dekker 2004:1-53.
- [1974] Durham SR, Ying S, Varney VA, Jacobson MR, Sudderick RM, Mackay IS, et al. Cytokine messenger RNA expression for IL-3, IL-4, IL-5, and granulocyte/macrophage-colony-stimulating factor in the nasal mucosa after local allergen provocation: relationship to tissue eosinophilia. J Immunol. 1992;148(8):2390-4.
- [1975] Kay AB. T cells in allergy and anergy. Allergy. 1999;54(Suppl 56):29-30.
- [1976] Holgate ST, Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet. 2006 Aug 26;368(9537):780-93.
- [1977] Rajakukasingam K, Durham S. Comparative pathogenesis of upper and lower airway allergic diseases. In: Corren J, Togias A, Bousquet J, eds. Upper and Lower Respiratory Disease Lung Biology in Health and Disease C Lenfant editor Vol 181. NY: Marcel Dekker 2004:139-74.
- [1978] Gaga M, Lambrou P, Papageorgiou N, Koulouris NG, Kosmas E, Fragakis S, et al. Eosinophils are a feature of upper and lower airway pathology in non-atopic asthma,

irrespective of the presence of rhinitis [In Process Citation]. Clin Exp Allergy. 2000;30(5):663-9.

- [1979] Vachier I, Vignola AM, Chiappara G, Bruno A, Meziane H, Godard P, et al. Inflammatory features of nasal mucosa in smokers with and without COPD. Thorax. 2004 Apr;59(4):303-7.
- [1980] Chakir J, Laviolette M, Boutet M, Laliberte R, Dube J, Boulet LP. Lower airways remodeling in nonasthmatic subjects with allergic rhinitis. Lab Invest. 1996;75(5):735-44.
- [1981] Djukanovic R, Lai CK, Wilson JW, Britten KM, Wilson SJ, Roche WR, et al. Bronchial mucosal manifestations of atopy: a comparison of markers of inflammation between atopic asthmatics, atopic nonasthmatics and healthy controls. Eur Respir J. 1992;5(5):538-44.
- [1982] Boulet LP, Laviolette M, Turcotte H, Cartier A, Dugas M, Malo JL, et al. Bronchial subepithelial fibrosis correlates with airway responsiveness to methacholine. Chest. 1997 Jul;112(1):45-52.
- [1983] Brown JL, Behndig AF, Sekerel BE, Pourazar J, Blomberg A, Kelly FJ, et al. Lower airways inflammation in allergic rhinitics: a comparison with asthmatics and normal controls. Clin Exp Allergy. 2007 May;37(5):688-95.
- [1984] Marcucci F, Passalacqua G, Canonica GW, Frati F, Salvatori S, Di cara G, et al. Lower airway inflammation before and after house dust mite nasal challenge: an age and allergen exposure-related phenomenon. Respir Med. 2007 Jul;101(7):1600-8.
- [1985] Chakir J, Laviolette M, Turcotte H, Boutet M, Boulet LP. Cytokine expression in the lower airways of nonasthmatic subjects with allergic rhinitis: influence of natural allergen exposure. J Allergy Clin Immunol. 2000 Nov;106(5):904-10.
- [1986] Hara J, Fujimura M, Myou S, Furusho S, Abo M, Oribe Y, et al. Eosinophilic inflammation, remodeling of lower airway, bronchial responsiveness and cough reflex sensitivity in non-asthmatic subjects with nasal allergy. Int Arch Allergy Immunol. 2006;140(4):327-33.
- [1987] Bousquet J, Chanez P, Lacoste JY, White R, Vic P, Godard P, et al. Asthma: a disease remodeling the airways. Allergy. 1992 Feb;47(1):3-11.
- [1988] Vignola AM, Kips J, Bousquet J. Tissue remodeling as a feature of persistent asthma. J Allergy Clin Immunol. 2000 Jun;105(6 Pt 1):1041-53.
- [1989] Crimi E, Milanese M, Oddera S, Mereu C, Rossi GA, Riccio A, et al. Inflammatory and mechanical factors of allergen-induced bronchoconstriction in mild asthma and rhinitis. J Appl Physiol. 2001 Sep;91(3):1029-34.
- [1990] Tonnel AB, Joseph M, Gosset P, Fournier E, Capron A. Stimulation of alveolar macrophages in asthmatic patients after local provocation test. Lancet. 1983;1(8339):1406-8.
- [1991] Calhoun WJ, Jarjour NN, Gleich GJ, Stevens CA, Busse WW. Increased airway inflammation with segmental versus aerosol antigen challenge. Am Rev Respir Dis. 1993;147(6 Pt 1):1465-71.
- [1992] Shaver JR, O'Connor JJ, Pollice M, Cho SK, Kane GC, Fish JE, et al. Pulmonary inflammation after segmental ragweed challenge in allergic asthmatic and nonasthmatic subjects. Am J Respir Crit Care Med. 1995 Oct;152(4 Pt 1):1189-97.
- [1993] Lopuhaa CE, Out TA, Jansen HM, Aalberse RC, van der Zee JS. Allergen-induced bronchial inflammation in house dust mite-allergic patients with or without asthma. Clin Exp Allergy. 2002 Dec;32(12):1720-7.
- [1994] Braunstahl GJ, Kleinjan A, Overbeek SE, Prins JB, Hoogsteden HC, Fokkens WJ. Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients. Am J Respir Crit Care Med. 2000 Jun;161(6):2051-7.
- [1995] Braunstahl GJ, Overbeek SE, Fokkens WJ, Kleinjan A, McEuen AR, Walls AF, et al. Segmental bronchoprovocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial

mucosa. Am J Respir Crit Care Med. 2001 Sep 1;164(5):858-65.

- [1996] Braunstahl GJ, Fokkens WJ, Overbeek SE, KleinJan A, Hoogsteden HC, Prins JB. Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: a comparison between upper and lower airways. Clin Exp Allergy. 2003 May;33(5):579-87.
- [1997] Beeh KM, Beier J, Kornmann O, Meier C, Taeumer T, Buhl R. A single nasal allergen challenge increases induced sputum inflammatory markers in non-asthmatic subjects with seasonal allergic rhinitis: correlation with plasma interleukin-5. Clin Exp Allergy. 2003 Apr;33(4):475-82.
- [1998] Bonay M, Neukirch C, Grandsaigne M, Lecon-Malas V, Ravaud P, Dehoux M, et al. Changes in airway inflammation following nasal allergic challenge in patients with seasonal rhinitis. Allergy. 2006 Jan;61(1):111-8.
- [1999] Braunstahl GJ, Overbeek SE, Kleinjan A, Prins JB, Hoogsteden HC, Fokkens WJ. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J Allergy Clin Immunol. 2001 Mar;107(3):469-76.
- [2000] Braunstahl GJ, Hellings PW. Allergic rhinitis and asthma: the link further unraveled. Curr Opin Pulm Med. 2003 Jan;9(1):46-51.
- [2001] Sehmi R, Baatjes AJ, Denburg JA. Hemopoietic progenitor cells and hemopoietic factors: potential targets for treatment of allergic inflammatory diseases. Curr Drug Targets Inflamm Allergy. 2003 Dec;2(4):271-8.
- [2002] Wallaert B, Janin A, Lassalle P, Copin MC, Devisme L, Gosset P, et al. Airway-like inflammation of minor salivary gland in bronchial asthma. Am J Respir Crit Care Med. 1994;150(3):802-9.
- [2003] Wallaert B, Desreumaux P, Copin MC, Tillie I, Benard A, Colombel JF, et al. Immunoreactivity for interleukin 3 and 5 and granulocyte/macrophage colony-stimulating factor of intestinal mucosa in bronchial asthma. J Exp Med. 1995;182(6):1897-904.
- [2004] Denburg JA, Woolley M, Leber B, Linden M, O'Byrne P Basophil and eosinophil differentiation in allergic reactions. J Allergy Clin Immunol. 1994;94(6 Pt 2):1135-41.
- [2005] KleinJan A, Godthelp T, van-Toornenbergen A, Fokkens W. Production and detection of (specific) IgE in nasal B cells and plasma cells of allergic rhinitis patients. Eur Respir J. 2000:in press.
- [2006] Abkowitz JL, Robinson AE, Kale S, Long MW, Chen J. Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood. 2003 Aug 15;102(4):1249-53.
- [2007] Braunstahl GJ, Hellings PW. Nasobronchial interaction mechanisms in allergic airways disease. Curr Opin Otolaryngol Head Neck Surg. 2006 Jun;14(3):176-82.
- [2008] Togias A, Windom H. The impact of nasal function and dysfunction on the lower airways. In: Corren J, Togias A, Bousquet J, eds. Upper and Lower Respiratory Disease Lung Biology in Health and Disease C Lenfant editor Vol 181. NY: Marcel Dekker 2004:53-86.
- [2009] Proctor DF. The upper airways. I. Nasal physiology and defense of the lungs. Am Rev Respir Dis. 1977 Jan;115(1):97-129.
- [2010] Stanley PJ, Wilson R, Greenstone MA, Mackay IS, Cole PJ. Abnormal nasal mucociliary clearance in patients with rhinitis and its relationship to concomitant chest disease. Br J Dis Chest. 1985 Jan;79(1):77-82.
- [2011] Assanasen P, Baroody FM, Naureckas E, Solway J, Naclerio RM. The nasal passage of subjects with asthma has a decreased ability to warm and humidify inspired air. Am J Respir Crit Care Med. 2001 Nov 1;164(9):1640-6.
- [2012] Naclerio RM, Proud D, Kagey-Sobotka A, Lichtenstein LM, Thompson M, Togias A. Cold dry air-induced rhinitis: effect of inhalation and exhalation through the nose. J Appl Physiol. 1995;79(2):467-71.

- [2013] Millqvist E, Johansson A, Bende M, Bake B. Effect of nasal air temperature on FEV1 and specific airways conductance. Clin Physiol. 2000 May;20(3):212-7.
- [2014] Eccles R, Windom H. Upper airway reflexes and involvement of the lower airways. In: Corren J, Togias A, Bousquet J, eds. Upper and Lower Respiratory Disease Lung Biology in Health and Disease C Lenfant editor Vol 181. NY: Marcel Dekker 2004:87-99.
- [2015] Johansson A, Bende M, Millqvist E, Bake B. Nasobronchial relationship after cold air provocation. Respir Med. 2000 Nov;94(11):1119-22.
- [2016] McLane ML, Nelson JA, Lenner KA, Hejal R, Kotaru C, Skowronski M, et al. Integrated response of the upper and lower respiratory tract of asthmatic subjects to frigid air. J Appl Physiol. 2000 Mar;88(3):1043-50.
- [2017] Shturman-Ellstein R, Zeballos RJ, Buckley JM, Souhrada JF. The beneficial effect of nasal breathing on exerciseinduced bronchoconstriction. Am Rev Respir Dis. 1978 Jul;118(1):65-73.
- [2018] Griffin MP, McFadden E, Jr., Ingram R, Jr. Airway cooling in asthmatic and nonasthmatic subjects during nasal and oral breathing. J Allergy Clin Immunol. 1982;69(4):354-9.
- [2019] Mangla PK, Menon MP. Effect of nasal and oral breathing on exercise-induced asthma. Clin Allergy. 1981 Sep;11(5):433-9.
- [2020] Kirkpatrick MB, Sheppard D, Nadel JA, Boushey HA. Effect of the oronasal breathing route on sulfur dioxideinduced bronchoconstriction in exercising asthmatic subjects. Am Rev Respir Dis. 1982 Jun;125(6):627-31.
- [2021] Koenig JQ, Morgan MS, Horike M, Pierson WE. The effects of sulfur oxides on nasal and lung function in adolescents with extrinsic asthma. J Allergy Clin Immunol. 1985 Dec;76(6):813-8.
- [2022] Laforest L, Bousquet J, Pietri G, Sazonov Kocevar V, Yin D, Pacheco Y, et al. Quality of life during pollen season in patients with seasonal allergic rhinitis with or without asthma. Int Arch Allergy Immunol. 2005 Mar;136(3):281-6.
- [2023] Taramarcaz P, Gibson P. Intranasal corticosteroids for asthma control in people with coexisting asthma and rhinitis. Cochrane Database Syst Rev. 2003;4:CD003570.
- [2024] Dahl R, Nielsen LP, Kips J, Foresi A, Cauwenberge P, Tudoric N, et al. Intranasal and inhaled fluticasone propionate for pollen-induced rhinitis and asthma. Allergy. 2005 Jul;60(7):875-81.
- [2025] Camargos P, Ibiapina C, Lasmar L, Cruz AA. Obtaining concomitant control of allergic rhinitis and asthma with a nasally inhaled corticosteroid. Allergy. 2007 Mar;62(3):310-6.
- [2026] Greiff L, Andersson M, Svensson C, Linden M, Wollmer P, Brattsand R, et al. Effects of orally inhaled budesonide in seasonal allergic rhinitis. Eur Respir J. 1998;11(6):1268-73.
- [2027] Barnes ML, Menzies D, Fardon TC, Burns P, Wilson AM, Lipworth BJ. Combined mediator blockade or topical steroid for treating the unified allergic airway. Allergy. 2007 Jan;62(1):73-80.
- [2028] Busse WW, Middleton E, Storms W, Dockhorn RJ, Chu TJ, Grossman J, et al. Corticosteroid-sparing effect of azelastine in the management of bronchial asthma. Am J Respir Crit Care Med. 1996;153(1):122-7.
- [2029] Berger WE, Schenkel EJ, Mansfield LE. Safety and efficacy of desloratadine 5 mg in asthma patients with seasonal allergic rhinitis and nasal congestion. Ann Allergy Asthma Immunol. 2002 Nov;89(5):485-91.
- [2030] Baena-Cagnani CE. Desloratadine activity in concurrent seasonal allergic rhinitis and asthma. Allergy. 2001;56 Suppl 65:21-7.
- [2031] Bousquet J, Godard P, Michel FB. Antihistamines in the treatment of asthma. Eur Respir J. 1992;5(9):1137-42.
- [2032] Van-Ganse E, Kaufman L, Derde MP, Yernault JC, Delaunois L, Vincken W. Effects of antihistamines in adult asthma: a meta-analysis of clinical trials. Eur Respir J. 1997;10(10):2216-24.

- [2033] Corren J, Harris AG, Aaronson D, Beaucher W, Berkowitz R, Bronsky E, et al. Efficacy and safety of loratadine plus pseudoephedrine in patients with seasonal allergic rhinitis and mild asthma. J Allergy Clin Immunol. 1997;100(6 Pt 1):781-8.
- [2034] Price DB, Swern A, Tozzi CA, Philip G, Polos P. Effect of montelukast on lung function in asthma patients with allergic rhinitis: analysis from the COMPACT trial. Allergy. 2006 Jun;61(6):737-42.
- [2035] Global strategy for asthma management and prevention. GINA. Update from NHLBI/WHO Workshop Report 1995, Revised 2002. NIH Publication N°02-3659. 2002.
- [2036] Barnes P. Is there a role for immunotherapy in the treatment of asthma? No. Am J Respir Crit Care Med. 1996;154:1227-8.
- [2037] Adkinson NF, Jr. Con: Immunotherapy is not clinically indicated in the management of allergic asthma. Am J Respir Crit Care Med. 2001 Dec 15;164(12):2140-1; discussion 1-2.
- [2038] Norman P. Is there a role for immunotherapy in the treatment of asthma? Yes. Am J Respir Crit Care Med. 1996;154:1225-8.
- [2039] Bousquet J. Pro: immunotherapy is clinically indicated in the management of allergic asthma. Am J Respir Crit Care Med. 2001;164(12):2139-40.
- [2040] Warner JO, Price JF, Soothill JF, Hey EN. Controlled trial of hyposensitisation to Dermatophagoides pteronyssinus in children with asthma. Lancet. 1978;2(8096):912-5.
- [2041] Bousquet J, Maasch H, Martinot B, Hejjaoui A, Wahl R, Michel FB. Double-blind, placebo-controlled immunotherapy with mixed grass-pollen allergoids. II. Comparison between parameters assessing the efficacy of immunotherapy. J Allergy Clin Immunol. 1988;82(3 Pt 1):439-46.
- [2042] Bousquet J, Maasch HJ, Hejjaoui A, Skassa-Brociek W, Wahl R, Dhivert H, et al. Double-blind, placebocontrolled immunotherapy with mixed grass-pollen allergoids. III. Efficacy and safety of unfractionated and high-molecular-weight preparations in rhinoconjunctivitis and asthma. J Allergy Clin Immunoh. 1989:84(4 Pt 1):546-56.
- [2043] Bousquet J, Hejjaoui A, Soussana M, Michel FB. Double-blind, placebo-controlled immunotherapy with mixed grass-pollen allergoids. IV. Comparison of the safety and efficacy of two dosages of a high-molecularweight allergoid. J Allergy Clin Immunol. 1990;85(2):490-7.
- [2044] Creticos PS, Reed CE, Norman PS, Khoury J, Adkinson N, Jr., Buncher CR, et al. Ragweed immunotherapy in adult asthma. N Engl J Med. 1996;334(8):501-6.
- [2045] Clavel R, Bousquet J, Andre C. Clinical efficacy of sublingual-swallow immunotherapy: a double-blind, placebo-controlled trial of a standardized five-grasspollen extract in rhinitis. Allergy. 1998;53(5):493-8.
- [2046] Van Metre TE, Jr., Marsh DG, Adkinson NF, Jr., Kagey-Sobotka A, Khattignavong A, Norman PS, Jr., et al. Immunotherapy for cat asthma. J Allergy Clin Immunol. 1988 Dec;82(6):1055-68.
- [2047] Hejjaoui A, Ferrando R, Dhivert H, Michel FB, Bousquet J. Systemic reactions occurring during immunotherapy with standardized pollen extracts. J Allergy Clin Immunol. 1992;89(5):925-33.
- [2048] Mellerup MT, Hahn GW, Poulsen LK, Malling H. Safety of allergen-specific immunotherapy. Relation between dosage regimen, allergen extract, disease and systemic side-effects during induction treatment. Clin Exp Allergy. 2000 Oct;30(10):1423-9.
- [2049] Winther L, Arnved J, Malling HJ, Nolte H, Mosbech H. Side-effects of allergen-specific immunotherapy: a prospective multi-centre study. Clin Exp Allergy. 2006 Mar;36(3):254-60.
- [2050] Blumberga G, Groes L, Haugaard L, Dahl R. Steroidsparing effect of subcutaneous SQ-standardised specific immunotherapy in moderate and severe house dust mite allergic asthmatics. Allergy. 2006 Jul;61(7):843-8.

- [2051] Johnstone DE. Immunotherapy in children: past, present, and future. (Part I). Ann Allergy. 1981;46(1):1-7.
  [2052] Crystal-Peters J, Neslusan C, Crown WH, Torres A.
- [2052] Crystal-Peters J, Neslusan C, Crown WH, Torres A. Treating allergic rhinitis in patients with comorbid asthma: the risk of asthma-related hospitalizations and emergency department visits. J Allergy Clin Immunol. 2002 Jan;109(1):57-62.
- [2053] Adams RJ, Fuhlbrigge AL, Finkelstein JA, Weiss ST. Intranasal steroids and the risk of emergency department visits for asthma. J Allergy Clin Immunol. 2002 Apr;109(4):636-42.
- [2054] Corren J, Manning BE, Thompson SF, Hennessy S, Strom BL. Rhinitis therapy and the prevention of hospital care for asthma: a case-control study. J Allergy Clin Immunol. 2004 Mar;113(3):415-9.
- [2055] Suissa S, Ernst P. Bias in observational study of the effectiveness of nasal corticosteroids in asthma. J Allergy Clin Immunol. 2005 Apr;115(4):714-9.
- [2056] Halpern MT, Schmier JK, Richner R, Guo C, Togias A. Allergic rhinitis: a potential cause of increased asthma medication use, costs, and morbidity. J Asthma. 2004 Feb;41(1):117-26.
- [2057] Civelek E, Soyer OU, Gemicioglu B, Sekerel BE. Turkish physicians' perception of allergic rhinitis and its impact on asthma. Allergy. 2006 Dec;61(12):1454-8.
- [2058] Demoly P, Concas V, Urbinelli R, Allaert F. Evaluation de l'influence des recommandations OMS-ARIA sur la prise en charge de la rhinite allergique en pratique de ville en France. Enguête ERNANI. Rev fr Allergol Immunol Clin. 2006;46:626-32.
- [2059] Helenius I, Lumme A, Haahtela T. Asthma, airway inflammation and treatment in elite athletes. Sports Med. 2005;35(7):565-74.
- [2060] Sue-Chu M, Karjalainen EM, Laitinen A, Larsson L, Laitinen LA, Bjermer L. Placebo-controlled study of inhaled budesonide on indices of airway inflammation in bronchoalveolar lavage fluid and bronchial biopsies in cross-country skiers. Respiration. 2000;67(4):417-25.
- [2061] Helenius I, Lumme A, Ounap J, Obase Y, Rytila P, Sarna S, et al. No effect of montelukast on asthma-like symptoms in elite ice hockey players. Allergy. 2004 Jan;59(1):39-44.
- [2062] Rundell KW, Spiering BA, Baumann JM, Evans TM. Effects of montelukast on airway narrowing from eucapnic voluntary hyperventilation and cold air exercise. Br J Sports Med. 2005 Apr;39(4):232-6.
- [2063] Fitch KD. beta2-Agonists at the Olympic Games. Clin Rev Allergy Immunol. 2006 Oct;31(2-3):259-68.
- [2064] Anderson SD, Sue-Chu M, Perry CP, Gratziou C, Kippelen P, McKenzie DC, et al. Bronchial challenges in athletes applying to inhale a beta2-agonist at the 2004 Summer Olympics. J Allergy Clin Immunol. 2006 Apr;117(4):767-73.
- [2065] Alaranta A, Alaranta H, Heliovaara M, Airaksinen M, Helenius I. Ample use of physician-prescribed medications in finnish elite athletes. Int J Sports Med. 2006 Nov;27(11):919-25.
- [2066] Striegel H, Rossner D, Simon P, Niess AM. The World Anti-Doping Code 2003--consequences for physicians associated with elite athletes. Int J Sports Med. 2005 Apr;26(3):238-43.
- [2067] van Schayck CP, van Der Heijden FM, van Den Boom G, Tirimanna PR, van Herwaarden CL. Underdiagnosis of asthma: is the doctor or the patient to blame? The DIMCA project. Thorax. 2000 Jul;55(7):562-5.
- [2068] Al-Shadli AM, Bener A, Brebner J, Dunn EV. Asthma diagnosis and management in adults: is the risk of underdiagnosis and undertreatment related to patients' education levels? J Asthma. 2001 Apr;38(2):121-6.
- [2069] van Weel C. Underdiagnosis of asthma and COPD: is the general practitioner to blame? Monaldi Arch Chest Dis. 2002 Feb;57(1):65-8.
- [2070] Okoromah CN, Oviawe O. Is childhood asthma underdiagnosed and undertreated? Niger Postgrad Med J. 2002 Dec;9(4):221-5.

- [2071] Demoly P, Bozonnat MC, Dacosta P, Daures JP. The diagnosis of asthma using a self-questionnaire in those suffering from allergic rhinitis: a pharmacoepidemiological survey in everyday practice in France. Allergy. 2006 Jun;61(6):699-704.
- [2072] Wright BM, Mc KC. Maximum forced expiratory flow rate as a measure of ventilatory capacity: with a description of a new portable instrument for measuring it. Br Med J. 1959 Nov 21;2(5159):1041-6.
- [2073] Yernault JC. The birth and development of the forced expiratory manoeuvre: a tribute to Robert Tiffeneau (1910-1961). Eur Respir J. 1997 Dec;10(12):2704-10.
- [2074] Enright PL, Lebowitz MD, Cockroft DW. Physiologic measures: pulmonary function tests. Asthma outcome. Am J Respir Crit Care Med. 1994;149(2 Pt 2):S19-20.
- [2075] Cirillo I, Klersy C, Marseglia GL, Vizzaccaro A, Pallestrini E, Tosca M, et al. Role of FEF25%-75% as a predictor of bronchial hyperreactivity in allergic patients. Ann Allergy Asthma Immunol. 2006 May;96(5):692-700.
- [2076] Ciprandi G, Cirillo I, Klersy C, Marseglia GL, Vizzaccaro A, Pallestrini E, et al. Role of FEF25-75 as an early marker of bronchial impairment in patients with seasonal allergic rhinitis. Am J Rhinol. 2006 Nov-Dec;20(6):641-7.
- [2077] Demoly P, Gauchoux R, Morera P, Touron D, Daures JP. The place of spirometry in the diagnosis of asthma in those suffering from allergic rhinitis: a pilot study. Allergy. 2005 Aug;60(8):1089-90.
- [2078] van Weel C, Schellevis FG. Comorbidity and guidelines: conflicting interests. Lancet. 2006 Feb 18;367(9510):550-1.
- [2079] Allansmith MR, Ross RN. Ocular allergy. Clin Allergy. 1988;18(1):1-13.
- [2080] Allansmith MR. Giant papillary conjunctivitis. J Am Optom Assoc. 1990;61(6 Suppl):S42-6.
- [2081] Bonini S, Bonini S. Pathogenesis: allergic conjunctivitis. In: Denburg J, ed. Allergy and allergic diseases: the mechanisms and therapeutic. Tollawa, USA: Human Press Inc 1998:509-19.
- [2082] Kosrirukvongs P, Visitsunthorn N, Vichyanond P, Bunnag C. Allergic conjunctivitis. Asian Pac J Allergy Immunol. 2001 Dec;19(4):237-44.
- [2083] Bonini S, Bonini S. Studies of allergic conjunctivitis. Chibret Int J. 1987;5:12-22.
- [2084] Bonini S, Coassin M, Aronni S, Lambiase A Vernal keratoconjunctivitis. Eye. 2004 Apr;18(4):345-51.
- [2085] Kosrirukvongs P, Vichyanond P, Wongsawad W. Vernal keratoconjunctivitis in Thailand. Asian Pac J Allergy Immunol. 2003 Mar;21(1):25-30.
- [2086] Ukponmwan CU. Vernal keratoconjunctivitis in Nigerians: 109 consecutive cases. Trop Doct. 2003 Oct;33(4):242-5.
- [2087] Lambiase A, Bonini S, Rasi G, Coassin M, Bruscolini A. Montelukast, a leukotriene receptor antagonist, in vernal keratoconjunctivitis associated with asthma. Arch Ophthalmol. 2003 May;121(5):615-20.
- [2088] Bonini S. Atopic keratoconjunctivitis. Allergy. 2004 Aug;59 Suppl 78:71-3.
- [2089] Baraniuk JN, Maibach H. Pathophysiological classification of chronic rhinosinusitis. Respir Res. 2005;6:149.
- [2090] Demoly P, Crampette L, Lebel B, Campbell AM, Mondain M, Bousquet J. Expression of cyclo-oxygenase 1 and 2 proteins in upper respiratory mucosa. Clin Exp Allergy. 1998;28(3):278-83.
  [2091] Demoly P, Crampette L, Mondain M, Campbell AM,
- [2091] Demoly P, Crampette L, Mondain M, Campbell AM, Lequeux N, Enander I, et al. Assessment of inflammation in noninfectious chronic maxillary sinusitis. J Allergy Clin Immunol. 1994;94(1):95-108.
- [2092] Demoly P, Crampette L, Mondain M, Enander I, Jones I, Bousquet J. Myeloperoxidase and interleukin-8 levels in chronic sinusitis. Clin Exp Allergy. 1997;27(6):672-5.
- [2093] Hamilos DL, Leung DY, Huston DP, Kamil A, Wood R, Hamid Q. GM-CSF, IL-5 and RANTES immunoreactivity and mRNA expression in chronic

hyperplastic sinusitis with nasal polyposis (NP). Clin Exp Allergy. 1998;28(9):1145-52.

- [2094] Hamilos DL, Leung DY, Wood R, Cunningham L, Bean DK, Yasruel Z, et al. Evidence for distinct cytokine expression in allergic versus nonallergic chronic sinusitis. J Allergy Clin Immunol. 1995;96(4):537-44.
- [2095] Hamilos DL, Leung DY, Wood R, Meyers A, Stephens JK, Barkans J, et al. Chronic hyperplastic sinusitis: association of tissue eosinophilia with mRNA expression of granulocyte-macrophage colony-stimulating factor and interleukin-3. J Allergy Clin Immunol. 1993;92(1 Pt 1):39-48.
- [2096] Naclerio RM, deTineo ML, Baroody FM. Ragweed allergic rhinitis and the paranasal sinuses. A computed tomographic study. Arch Otolaryngol Head Neck Surg. 1997;123(2):193-6.
- [2097] Piette V, Bousquet C, Kvedariene V, Dhivert-Donnadieu H, Crampette L, Senac JP, et al. Sinus CT scans and mediator release in nasal secretions after nasal challenge with cypress pollens, Allergy. 2004 Aug;59(8):863-8.
- [2098] Baroody FM, Sub SH, Naclerio RM. Total IgE serum levels correlate with sinus mucosal thickness on computerized tomography scans. J Allergy Clin Immunol. 1997;100(4):563-8.
- [2099] Savolainen S. Allergy in patients with acute maxillary sinusitis. Allergy. 1989;44(2):116-22.
- [2100] Karlsson G, Holmberg K. Does allergic rhinitis predispose to sinusitis? Acta Otolaryngol Suppl. 1994;515:26-8; discussion 9.
- [2101] Benninger MS. Rhinitis, sinusitis and their relationships to allergies. Am J Rhinol. 1992;6:37-43.
- [2102] Emanuel IA, Shah SB. Chronic rhinosinusitis: allergy and sinus computed tomography relationships. Otolaryngol Head Neck Surg. 2000 Dec;123(6):687-91.
- [2103] Collins JG. Prevalence of selected chronic conditions: United States, 1990-1992. Vital Health Stat 10. 1997(194):1-89.
- [2104] Greisner WA, 3rd, Settipane GA. Hereditary factor for nasal polyps. Allergy Asthma Proc. 1996;17(5):283-6.
- [2105] Gordts F, Clement, P.A.R., Buisseret, T. Prevalence of sinusitis signs in a non-ENT population. Otorhinolaryngology. 1996;58:315-9.
- [2106] Chen Y, Dales R, Lin M. The epidemiology of chronic rhinosinusitis in Canadians. Laryngoscope. 2003;113(7):1199-205.
- [2107] Cody DT, 2nd, Neel HB, 3rd, Ferreiro JA, Roberts GD. Allergic fungal sinusitis: the Mayo Clinic experience. Laryngoscope. 1994 Sep;104(9):1074-9.
- [2108] Ponikau JU, Sherris DA, Kern EB, Homburger HA, Frigas E, Gaffey TA, et al. The diagnosis and incidence of allergic fungal sinusitis. Mayo Clin Proc. 1999 Sep;74(9):877-84.
- [2109] Khan DA, Cody DT, 2nd, George TJ, Gleich GJ, Leiferman KM. Allergic fungal sinusitis: an immunohistologic analysis. J Allergy Clin Immunol. 2000 Dec;106(6):1096-101.
- [2110] Taylor MJ, Ponikau JU, Sherris DA, Kern EB, Gaffey TA, Kephart G, et al. Detection of fungal organisms in eosinophilic mucin using a fluorescein-labeled chitinspecific binding protein. Otolaryngol Head Neck Surg. 2002 Nov;127(5):377-83.
- [2111] Braun H, Buzina W, Freudenschuss K, Beham A, Stammberger H. 'Eosinophilic fungal rhinosinusitis': a common disorder in Europe? Laryngoscope. 2003 Feb;113(2):264-9.
- [2112] Luong A, Marple BF. Allergic fungal rhinosinusitis. Curr Allergy Asthma Rep. 2004 Nov;4(6):465-70.
- [2113] Weschta M, Rimek D, Formanek M, Polzehl D, Podbielski A, Riechelmann H. Topical antifungal treatment of chronic rhinosinusitis with nasal polyps: a randomized, double-blind clinical trial. J Allergy Clin Immunol. 2004 Jun;113(6):1122-8.
- [2114] Ebbens FA, Scadding GK, Badia L, Hellings PW, Jorissen M, Mullol J, et al. Amphotericin B nasal lavages: not a solution for patients with chronic

rhinosinusitis. J Allergy Clin Immunol. 2006 Nov;118(5):1149-56.

- [2115] Braun JJ, Alabert JP, Michel FB, Quiniou M, Rat C, Cougnard J, et al. Adjunct effect of loratadine in the treatment of acute sinusitis in patients with allergic rhinitis. Allergy. 1997;52(6):650-5.
- [2116] Lane AP, Pine HS, Pillsbury HC, 3rd. Allergy testing and immunotherapy in an academic otolaryngology practice: a 20-year review. Otolaryngol Head Neck Surg. 2001 Jan;124(1):9-15.
- [2117] Alobid I, Benitez P, Valero A, Berenguer J, Bernal-Sprekelsen M, Picado C, et al. The impact of atopy, sinus opacification, and nasal patency on quality of life in patients with severe nasal polyposis. Otolaryngol Head Neck Surg. 2006 Apr;134(4):609-12.
- [2118] Hellings P, Jorissen M, Ceuppens JL. The Waldeyer's ring. Acta Otorhinolaryngol Belg. 2000;54(3):237-41.
- [2119] Huang SW, Giannoni C. The risk of adenoid hypertrophy in children with allergic rhinitis. Ann Allergy Asthma Immunol. 2001 Oct;87(4):350-5.
- [2120] Gryczynska D, Kobos J, Zakrzewska A. Relationship between passive smoking, recurrent respiratory tract infections and otitis media in children. Int J Pediatr Otorhinolaryngol. 1999 Oct 5;49 Suppl 1:S275-8.
- [2121] Vinke JG, KleinJan A, Severijnen LW, Hoeve LJ, Fokkens WJ. Differences in nasal cellular infiltrates between allergic children and age-matched controls. Eur Respir J. 1999 Apr;13(4):797-803.
- [2122] Nguyen LH, Manoukian JJ, Sobol SE, Tewfik TL, Mazer BD, Schloss MD, et al. Similar allergic inflammation in the middle ear and the upper airway: evidence linking otitis media with effusion to the united airways concept. J Allergy Clin Immunol. 2004 Nov;114(5):1110-5.
- [2123] Papatziamos G, van der Ploeg I, Hemlin C, Patwardhan A, Scheynius A. Increased occurrence of IgE+ and FcepsilonRI+ cells in adenoids from atopic children. Allergy. 1999 Sep;54(9):916-25.
- [2124] Cassano P, Gelardi M, Cassano M, Fiorella ML, Fiorella R. Adenoid tissue rhinopharyngeal obstruction grading based on fiberendoscopic findings: a novel approach to therapeutic management. Int J Pediatr Otorhinolaryngol. 2003 Dec;67(12):1303-9.
- [2125] Cengel S, Akyol MU. The role of topical nasal steroids in the treatment of children with otitis media with effusion and/or adenoid hypertrophy. Int J Pediatr Otorhinolaryngol. 2006 Apr;70(4):639-45.
- [2126] Demain JG, Goetz DW. Pediatric adenoidal hypertrophy and nasal airway obstruction: reduction with aqueous nasal beclomethasone. Pediatrics. 1995 Mar;95(3):355-64.
- [2127] Criscuoli G, D'Amora S, Ripa G, Cinquegrana G, Mansi N, Impagliazzo N, et al. Frequency of surgery among children who have adenotonsillar hypertrophy and improve after treatment with nasal beclomethasone. Pediatrics. 2003 Mar;111(3):e236-8.
- [2128] Georgalas C, Thomas K, Owens C, Abramovich S, Lack G. Medical treatment for rhinosinusitis associated with adenoidal hypertrophy in children: an evaluation of clinical response and changes on magnetic resonance imaging. Ann Otol Rhinol Laryngol. 2005 Aug;114(8):638-44.
- [2129] Lazo-Saenz JG, Galvan-Aguilera AA, Martinez-Ordaz VA, Velasco-Rodriguez VM, Nieves-Renteria A, Rincon-Castaneda C. Eustachian tube dysfunction in allergic rhinitis. Otolaryngol Head Neck Surg. 2005 Apr;132(4):626-9.
- [2130] Skoner DP, Doyle WJ, Chamovitz AH, Fireman P. Eustachian tube obstruction after intranasal challenge with house dust mite. Arch Otolaryngol Head Neck Surg. 1986;112(8):840-2.
- [2131] Caffarelli C, Savini E, Giordano S, Gianlupi G, Cavagni G. Atopy in children with otitis media with effusion. Clin Exp Allergy. 1998 May;28(5):591-6.
- [2132] Umapathy D, Alles R, Scadding G. A community based questionnaire study on the association between symptoms suggestive of otitis media with effusion,

rhinitis and asthma in primary care children. Int J Ped Otorhinol. 2007:in press.

- [2133] Teele DW, Klein JO, Rosner B. Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. J Infect Dis. 1989 Jul;160(1):83-94.
- [2134] Wright ED, Hurst D, Miotto D, Giguere C, Hamid Q. Increased expression of major basic protein (MBP) and interleukin-5(IL-5) in middle ear biopsy specimens from atopic patients with persistent otitis media with effusion. Otolaryngol Head Neck Surg. 2000 Nov;123(5):533-8.
- [2135] Hurst DS, Venge P. Evidence of eosinophil, neutrophil, and mast-cell mediators in the effusion of OME patients with and without atopy. Allergy. 2000 May;55(5):435-41.
- [2136] Chantzi FM, Kafetzis DA, Bairamis T, Avramidou C, Paleologou N, Grimani I, et al. IgE sensitization, respiratory allergy symptoms, and heritability independently increase the risk of otitis media with effusion. Allergy. 2006 Mar;61(3):332-6.
- [2137] Van-Cauwenberge P. Ingels K. Rhinitis and otitis. In: Mygind N, Naclerio R, eds. *Allergic and non-allergic rhinitis*. Copenhagen: Munksgaard 1993:189-93.
- [2138] Irander K, Borres MP, Bjorksten B. Middle ear diseases in relation to atopy and nasal metachromatic cells in infancy. Int J Pediatr Otorhinolaryngol. 1993;26(1):1-9.
- [2139] Rylander R, Megevand Y. Environmental risk factors for respiratory infections. Arch Environ Health. 2000 Sep-Oct,55(5):300-3.
- [2140] Alles R, Parikh A, Hawk L, Darby Y, Romero JN, Scadding G. The prevalence of atopic disorders in children with chronic otitis media with effusion. Pediatr Allergy Immunol. 2001 Apr;12(2):102-6.
- [2141] Tewfik TL, Mazer B. The links between allergy and otitis media with effusion. Curr Opin Otolaryngol Head Neck Surg. 2006 Jun;14(3):187-90.
- [2142] Miceli Sopo S, Zorzi G, Calvani M, Jr. Should we screen every child with otitis media with effusion for allergic rhinitis? Arch Dis Child. 2004 Mar;89(3):287-8.
- [2143] Irwin RS, Madison JM. The diagnosis and treatment of cough. N Engl J Med. 2000 Dec 7;343(23):1715-21.
- [2144] D'Urzo A, Jugovic P. Chronic cough. Three most common causes. Can Fam Physician. 2002 Aug;48:1311-6.
- [2145] Morice AH, Fontana GA, Sovijarvi AR, Pistolesi M, Chung KF, Widdicombe J, et al. The diagnosis and management of chronic cough. Eur Respir J. 2004 Sep;24(3):481-92.
- [2146] Millqvist E, Bende M. Role of the upper airways in patients with chronic cough. Curr Opin Allergy Clin Immunol. 2006 Feb;6(1):7-11.
- [2147] McGarvey LP, Nishino T. Acute and chronic cough. Pulm Pharmacol Ther. 2004;17(6):351-4.
- [2148] Lack G. Pediatric allergic rhinitis and comorbid disorders. J Allergy Clin Immunol. 2001 Jul;108(1 Suppl):S9-15.
- [2149] Sherrill DL, Guerra S, Cristina Minervini M, Wright AL, Martinez FD. The relation of rhinitis to recurrent cough and wheezing: a longitudinal study. Respir Med. 2005 Nov;99(11):1377-85.
- [2150] Guerra S, Sherrill DL, Baldacci S, Carrozzi L, Pistelli F, Di Pede F, et al. Rhinitis is an independent risk factor for developing cough apart from colds among adults. Allergy. 2005 Mar;60(3):343-9.
- [2151] Gibson PG. Atopic cough. Thorax. 2004 May;59(5):449.
- [2152] Harding SM, Richter JE. The role of gastroesophageal reflux in chronic cough and asthma. Chest. 1997;111(5):1389-402.
- [2153] Rosen MJ. Chronic cough due to bronchiectasis: ACCP evidence-based clinical practice guidelines. Chest. 2006 Jan;129(1 Suppl):122S-31S.
- [2154] Overlack A. ACE inhibitor-induced cough and bronchospasm. Incidence, mechanisms and management. Drug Saf. 1996;15(1):72-8.
- [2155] Morice AH. Post-nasal drip syndrome--a symptom to be sniffed at? Pulm Pharmacol Ther. 2004;17(6):343-5.

- [2156] Pratter MR. Chronic upper airway cough syndrome secondary to rhinosinus diseases (previously referred to as postnasal drip syndrome): ACCP evidence-based clinical practice guidelines. Chest. 2006 Jan;129(1 Suppl):63S-71S.
- [2157] Boner AL, Richelli C, Bonizzato C, Piacentini G. Coughvariant or hidden asthma in childhood. Rev Med Suisse Romande. 1994;114(3):217-21.
- [2158] Sano T, Ueda H, Bando H. A preliminary study of PEFR monitoring in patients with chronic cough. Lung. 2004;182(5):285-95.
- [2159] Gawchik S, Goldstein S, Prenner B, John A. Relief of cough and nasal symptoms associated with allergic rhinitis by mometasone furoate nasal spray. Ann Allergy Asthma Immunol. 2003 Apr;90(4):416-21.
- [2160] Ciprandi G, Tosca M, Ricca V, Passalacqua G, Fregonese L, Fasce L, et al. Cetirizine treatment of allergic cough in children with pollen allergy. Allergy. 1997;52(7):752-4.
- [2161] Chang A, Peake J, McElrea M. Anti-histamines for prolonged non-specific cough in children. Cochrane Database Syst Rev. 2006;3:CD005604.
- [2162] Public health advisory: Nonprescription cough and cold medicine use in children. August 15, 2007. <u>http://www.fda.gov/cder/drug/advisory/cough\_cold.htm</u>. 2007.
- [2163] Jackson-Menaldi CA, Dzul AI, Holland RW. Allergies and vocal fold edema: a preliminary report. J Voice. 1999 Mar;13(1):113-22.
- [2164] Williams AJ, Baghat MS, Stableforth DE, Cayton RM, Shenoi PM, Skinner C. Dysphonia caused by inhaled steroids: recognition of a characteristic laryngeal abnormality. Thorax. 1983 Nov;38(11):813-21.
- [2165] DelGaudio JM. Steroid inhaler laryngitis: dysphonia caused by inhaled fluticasone therapy. Arch Otolaryngol Head Neck Surg. 2002 Jun;128(6):677-81.
- [2166] Theodoropoulos DS, Ledford DK, Lockey RF, Pecoraro DL, Rodriguez JA, Johnson MC, et al. Prevalence of upper respiratory symptoms in patients with symptomatic gastroesophageal reflux disease. Am J Respir Crit Care Med. 2001 Jul 1;164(1):72-6.
- [2167] Pynnonen MA, Terrell JE. Conditions that masquerade as chronic rhinosinusitis: a medical record review. Arch Otolaryngol Head Neck Surg. 2006 Jul;132(7):748-51.
- [2168] Field SK, Field TS, Cowie RL. Extraesophageal manifestations of gastroesophageal reflux. Minerva Gastroenterol Dietol. 2001 Sep;47(3):137-50.
- [2169] Gelfand EW. Pediatric allergic rhinitis: factors affecting treatment choice. Ear Nose Throat J. 2005 Mar;84(3):163-8.
- [2170] Gentile D, Shapiro G, Sloner D. Allergic rhinitis. In: Leung D, Sampson H, Geha R, Szefler S, eds. *Pediatric* allergy Principles and Practice: Mosby 2003:287-97.
  [2171] Nickel R, Lau S, Niggemann B, Gruber C, von Mutius E,
- [2171] Nickel R, Lau S, Niggemann B, Gruber C, von Mutius E, Illi S, et al. Messages from the German Multicentre Allergy Study. Pediatr Allergy Immunol. 2002;13 Suppl 15:7-10.
- [2172] Hahn EL, Bacharier LB. The atopic march: the pattern of allergic disease development in childhood. Immunol Allergy Clin North Am. 2005 May;25(2):231-46, v.
- [2173] Keil T, Kulig M, Simpson A, Custovic A, Wickman M, Kull I, et al. European birth cohort studies on asthma and atopic diseases: 1. Comparison of study designs -- a GALEN initiative. Allergy. 2006 Feb;61(2):221-8.
- [2174] Keil T, Kulig M, Simpson A, Custovic A, Wickman M, Kull I, et al. European birth cohort studies on asthma and atopic diseases: II. Comparison of outcomes and exposures--a GALEN initiative. Allergy. 2006 Sep;61(9):1104-11.
- [2175] Spergel JM, Paller AS. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003 Dec;112(6 Suppl):S118-27.
- [2176] Williams H, Flohr C. How epidemiology has challenged 3 prevailing concepts about atopic dermatitis. J Allergy Clin Immunol. 2006 Jul;118(1):209-13.

- [2177] Gustafsson D, Sjoberg O, Foucard T. Development of allergies and asthma in infants and young children with atopic dermatitis--a prospective follow-up to 7 years of age. Allergy. 2000 Mar;55(3):240-5.
- [2178] Illi S, von Mutius E, Lau S, Nickel R, Gruber C, Niggemann B, et al. The natural course of atopic dermatitis from birth to age 7 years and the association with asthma. J Allergy Clin Immunol. 2004 May;113(5):925-31.
- [2179] Pekkarinen PT, von Hertzen L, Laatikainen T, Makela MJ, Jousilahti P, Kosunen TU, et al. A disparity in the association of asthma, rhinitis, and eczema with allergenspecific IgE between Finnish and Russian Karelia. Allergy. 2007 Mar;62(3):281-7.
- [2180] Kurukulaaratchy RJ, Matthews S, Arshad SH. Defining childhood atopic phenotypes to investigate the association of atopic sensitization with allergic disease. Allergy. 2005 Oct;60(10):1280-6.
- [2181] Gold MS, Kemp AS, Atopic disease in childhood. Med J Aust. 2005 Mar 21/182(6):298-304.
- [2182] Guilbert TW, Morgan WJ, Zeiger RS, Bacharier LB, Boehmer SJ, Krawiec M, et al. Atopic characteristics of children with recurrent wheezing at high risk for the development of childhood asthma. J Allergy Clin Immunol 2004 Dec;114(6):1282-7.
- [2183] Kulig M, Bergmann R, Tacke U, Wahn U, Guggenmoos-Holzmann I. Long-lasting sensitization to food during the first two years precedes allergic airway disease. The MAS Study Group, Germany. Pediatr Allergy Immunol. 1998 May;9(2):61-7.
- [2184] Chatkin MN, Menezes AM, Victora CG, Barros FC. High prevalence of asthma in preschool children in Southern Brazil: a population-based study. Pediatr Pulmonol. 2003 Apr;35(4):296-301.
- [2] 85] Blackwell DL, Tonthat L. Summary health statistics for U.S. children: National Health Interview Survey, 1999. Vital Health Stat 10. 2003 Jul(210):1-50.
- [2186] Cohet C, Cheng S, MacDonald C, Baker M, Foliaki S, Huntington N, et al. Infections, medication use, and the prevalence of symptoms of asthma, rhinitis, and eczema in childhood. J Epidemiol Community Health. 2004 Oct;58(10):852-7.
- [2187] Osborne M, Reponen T, Adhikari A, Cho SH, Grinshpun SA, Levin L, et al. Specific fungal exposures, allergic sensitization, and rhinitis in infants. Pediatr Allergy Immunol. 2006 Sep;17(6):450-7.
- [2188] Biagini JM, LeMasters GK, Ryan PH, Levin L, Reponen T, Bernstein DI, et al. Environmental risk factors of rhinitis in early infancy. Pediatr Allergy Immunol. 2006 Jun;17(4):278-84.
- [2189] Shiva F, Nasiri M, Sadeghi B, Padyab M. Effects of passive smoking on common respiratory symptoms in young children. Acta Paediatr. 2003 Dec;92(12):1394-7.
- [2190] Marinho S, Simpson A, Lowe L, Kissen P, Murray C, Custovic A. Rhinoconjunctivitis in 5-year-old children: a population-based birth cohort study. Allergy. 2007 Apr;62(4):385-93.
- [2191] Marinho S, Simpson A, Soderstrom L, Woodcock A, Ahlstedt S, Custovic A. Quantification of atopy and the probability of rhinitis in preschool children: a populationbased birth cohort study. Allergy. 2007 Sep 5.
- [2192] Berger WE. Allergic rhinitis in children : diagnosis and management strategies. Paediatr Drugs. 2004;6(4):233-50
- [2193] Lilja G, Oman H, Johansson SG. Development of atopic disease during childhood and its prediction by Phadiatop Paediatric. Clin Exp Allergy. 1996;26(9):1073-9.
- [2194] Ballardini N, Nilsson C, Nilsson M, Lilja G. ImmunoCAP Phadiatop Infant--a new blood test for detecting IgE sensitisation in children at 2 years of age. Allergy. 2006 Mar;61(3):337-43.
- [2195] Fiocchi A, Besana R, Ryden AC, Terracciano L, Andreotti M, Arrigoni S, et al. Differential diagnosis of IgE-mediated allergy in young children with wheezing or eczema symptoms using a single blood test. Ann Allergy Asthma Immunol. 2004 Oct;93(4):328-33.

- [2196] Kulig M, Bergmann R, Niggemann B, Burow G, Wahn U. Prediction of sensitization to inhalant allergens in childhood: evaluating family history, atopic dermatitis and sensitization to food allergens. The MAS Study Group. Multicentre Allergy Study. Clin Exp Allergy. 1998 Nov;28(11):1397-403.
- [2197] Nickel R, Illi S, Lau S, Sommerfeld C, Bergmann R, Kamin W, et al. Variability of total serum immunoglobulin E levels from birth to the age of 10 years. A prospective evaluation in a large birth cohort (German Multicenter Allergy Study). Clin Exp Allergy. 2005 May;35(5):619-23.
- [2198] Kerrebijn JD, Poublon RM, Overbeek SE. Nasal and paranasal disease in adult cystic fibrosis patients. Eur Respir J. 1992;5(10):1239-42.
- [2199] Rowe-Jones JM, Shembekar M, Trendell-Smith N, Mackay IS. Polypoidal rhinosinusitis in cystic fibrosis: a clinical and histopathological study. Clin Otolaryngol. 1997;22(2):167-71.
- [2200] Steele RW. Rhinosinusitis in children. Curr Allergy Asthma Rep. 2006 Nov;6(6):508-12.
- [2201] Woodring JH, Royer JM, McDonagh D. Kartagener's syndrome. Jama. 1982 May 28;247(20):2814-6.
- [2202] Carlsen KH. Therapeutic strategies for allergic airways diseases. Paediatr Respir Rev. 2004 Mar;5(1):45-51.
- [2203] Stempel DA, Stanford RH, Carranza Rosenzweig JR, McLaughlin TP. The use of rhinitis medications in children receiving initial controller therapy for asthma. Curr Med Res Opin. 2006 Nov;22(11):2279-85.
- [2204] Baena-Cagnani CE. Safety and tolerability of treatments for allergic rhinitis in children. Drug Saf. 2004;27(12):883-98.
- [2205] Passali D, Mösges R. International Conference on Allergic Rhinitis in childhood. Allergy. 1999;54 (suppl 55):4-34.
- [2206] Custovic A, Simons F. Drugs used in pediatric allergy: should we conduct studies in children or extrapolate from adults. Allergy. 2007:in press.
- [2207] Cuzzolin L, Zaccaron A, Fanos V. Unlicensed and offlabel uses of drugs in paediatrics: a review of the literature. Fundam Clin Pharmacol. 2003 Feb;17(1):125-31.
- [2208] Steinbrook R. Testing medications in children. N Engl J Med. 2002 Oct 31;347(18):1462-70.
- [2209] Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003 Sep 18:349(12):1157-67.
- [2210] Agertoft L, Pedersen S. Short-term lower leg growth rate in children with rhinitis treated with intranasal mometasone furoate and budesonide [In Process Citation]. J Allergy Clin Immunol. 1999;104(5):948-52.
- [2211] Schenkel E, Skoner D, Bronsky E, Miller S, Pearlman D, Rooklin A, et al. Absence of growth retardation in children with perennial allergic rhinitis following 1 year treatment with mometasone furoate aqueous nasal spray. Pediatrics. 2000;101:e22.
- [2212] Allen DB. Do intranasal corticosteroids affect childhood growth? Allergy. 2000;55 Suppl 62:15-8.
- [2213] Ngamphaiboon J, Thepchatri A, Chatchatee P, Chumdermpadetsuk S. Fluticasone propionate aqueous nasal spray treatment for perennial allergic rhinitis in children. Ann Allergy Asthma Immunol. 1997;78(5):479-84.
- [2214] Wolthers OD, Pedersen S. Short-term growth in children with allergic rhinitis treated with oral antihistamine, depot and intranasal glucocorticosteroids [see comments]. Acta Paediatr. 1993;82(8):635-40.
- [2215] Galant SP, Melamed IR, Nayak AS, Blake KV, Prillaman BA, Reed KD, et al. Lack of effect of fluticasone propionate aqueous nasal spray on the hypothalamicpituitary-adrenal axis in 2- and 3-year-old patients. Pediatrics. 2003 Jul;112(1 Pt 1):96-100.
- [2216] Skoner DP, Gentile D, Angelini B, Kane R, Birdsall D, Banerji D. The effects of intranasal triamcinolone

acetonide and intranasal fluticasone propionate on shortterm bone growth and HPA axis in children with allergic rhinitis. Ann Allergy Asthma Immunol. 2003 Jan;90(1):56-62.

- [2217] Brannan MD, Herron JM, Affrime MB. Safety and tolerability of once-daily mometasone furoate aqueous nasal spray in children. Clin Ther. 1997;19(6):1330-9.
- [2218] Dibildox J. Safety and efficacy of mometasone furoate aqueous nasal spray in children with allergic rhinitis: results of recent clinical trials. J Allergy Clin Immunol. 2001 Jul;108(1 Suppl):S54-8.
- [2219] Cutler D, Banfield C, Affrime M. Safety of mometasone furoate nasal spray in children with allergic rhinitis as young as 2 years of age: a randomized controlled trial. Pediatr Asthma, Allergy Immunol. 2006;19(3):146-53.
- [2220] Grossman J, Banov C, Bronsky EA, Nathan RA, Pearlman D, Winder JA, et al. Fluticasone propionate aqueous nasal spray is safe and effective for children with seasonal allergic rhinitis. Pediatrics. 1993;92(4):594-9.
- [2221] Boner A, Sette L, Martinati L, Sharma RK, Richards DH. The efficacy and tolerability of fluticasone propionate aqueous nasal spray in children with seasonal allergic rhinitis. Allergy. 1995;50(6):498-505.
  [2222] Fokkens WJ, Scadding GK. Perennial rhinitis in the
- [2222] Fokkens WJ, Scadding GK. Perennial rhinitis in the under 4s: a difficult problem to treat safely and effectively? A comparison of intranasal fluticasone propionate and ketotifen in the treatment of 2-4-year-old children with perennial rhinitis. Pediatr Allergy Immunol. 2004 Jun;15(3):261-6.
- [2223] Stanaland BE. Once-daily budesonide aqueous nasal spray for allergic rhinitis: a review. Clin Ther. 2004 Apr;26(4):473-92.
- [2224] Welch MJ, Bronsky EA, Grossman J, Shapiro GG, Tinkelman DG, Garcia JD, et al. Clinical evaluation of triamcinolone acetonide nasal aerosol in children with perennial allergic rhinitis. Ann Allergy. 1991;67(5):493-8
- [2225] Meltzer EO. Antihistamine- and decongestant-induced performance decrements. J Occup Med. 1990;32(4):327-34.
- [2226] Simons F. The therapeutic index of newer H1-receptor antagonists. Clin Exp Allergy. 1994;24:707-23.
- [2227] Salmun LM, Gates D, Scharf M, Greiding L, Ramon F, Heithoff K. Loratadine versus cetirizine: assessment of somnolence and motivation during the workday. Clin Ther. 2000 May;22(5):573-82.
- [2228] Simons FE. H1-Antihistamines: more relevant than ever in the treatment of allergic disorders. J Allergy Clin Immunol. 2003 Oct;112(4 Suppl):S42-52.
- [2229] Cranswick N, Turzikova J, Fuchs M, Hulhoven R. Levocetirizine in 1-2 year old children: pharmacokinetic and pharmacodynamic profile. Int J Clin Pharmacol Ther. 2005 Apr;43(4):172-7.
- [2230] Simons FE, Silas P, Portnoy JM, Catuogno J, Chapman D, Olufade AO, et al. Safety of cetirizine in infants 6 to 11 months of age: a randomized, double-blind, placebocontrolled study. J Allergy Clin Immunol. 2003 Jun;111(6):1244-8.
- [2231] Grimfeld A, Holgate ST, Canonica GW, Bonini S, Borres MP, Adam D, et al. Prophylactic management of children at risk for recurrent upper respiratory infections: the Preventia I Study. Clin Exp Allergy. 2004 Nov;34(11):1665-72.
- [2232] Simons F, Group ObotEPoAiACES. Safety of levocetirizine treatment in young atopic children. A 18month study. Pediatr Allergy Immunol. 2007:in press.
- [2233] Vermeulen J, Mercer M. Comparison of the efficacy and tolerability of topical levocabastine and sodium cromoglycate in the treatment of seasonal allergic rhinoconjunctivitis in children. Pediatr Allergy Immunol. 1994;5(4):209-13.
- [2234] Sabbah A, Marzetto M. Azelastine eye drops in the treatment of seasonal allergic conjunctivitis or rhinoconjunctivitis in young children. Curr Med Res Opin. 1998;14(3):161-70.

- [2235] Engstrom I, Oberger E, Blyckert A, Kraepelien S. Disodium cromoglycate in the treatment of seasonal allergic rhinoconjunctivitis in children. Ann Allergy. 1971;29(10):505-9.
- [2236] Sensi LG, Seri A, Siracusa A, Pertici L, Marcucci F. Allergic rhinitis in children: effects of flunisolide and disodium cromoglycate on nasal eosinophil cationic protein. Clin Exp Allergy. 1997;27(3):270-6.
- [2237] Moller C, Berg IM, Berg T, Kjellman M, Stromberg L. Nedocromil sodium 2% eye drops for twice-daily treatment of seasonal allergic conjunctivitis: a Swedish multicentre placebo-controlled study in children allergic to birch pollen. Clin Exp Allergy. 1994;24(9):884-7.
- [2238] Garavello W, Di Berardino F, Romagnoli M, Sambataro G, Gaini RM. Nasal rinsing with hypertonic solution: an adjunctive treatment for pediatric seasonal allergic rhinoconjunctivitis. Int Arch Allergy Immunol. 2005 Aug;137(4):310-4.
- [2239] Simons F. Allergic rhinitis and associated disorders. In: McMillan J, Feigin R, Angelis CD, Jones M, eds. Pediatrics: Principle and Practice. Philadephia, PA: Lippincott Williams & Wilkins 2006:2428-32.
- Content on the second s [2240] Penagos M, Compalati E, Tarantini F, Baena-Cagnani R, Huerta J, Passalacqua G, et al. Efficacy of sublingual immunotherapy in the treatment of allergic rhinitis in pediatric patients 3 to 18 years of age: a meta-analysis of randomized, placebo-controlled, double-blind trials. Ann Allergy Asthma Immunol. 2006 Aug;97(2):141-8.
- [2241] Baena-Cagnani CE, Passalacqua G, Baena-Cagnani RC, Croce VH, Canonica WG. Sublingual immunotherapy in pediatric patients: beyond clinical efficacy. Curr Opin Allergy Clin Immunol. 2005 Apr;5(2):173-7.